For Ruby 1.9
and Ruby 2.0

ub The Pragmatic
Programmers’

Guide

Dave Thomas

with Chad Fowler and Andy Hunt

Download from Wow! eBook <www.wowebook.com> . L Il'i F'-.].”.' ¥ :":fl"l .h_ %

Download from Wow! eBook <www.wowebook.com>

Programming Ruby 1.9 & 2.0

The Pragmatic Programmers” Guide

Dave Thomas
with Chad Fowler
Andy Hunt

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

W\ Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC
was aware of a trademark claim, the designations have been printed in initial capital letters or in all
capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no re-
sponsibility for errors or omissions, or for damages that may result from the use of information (in-
cluding program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit
us at http://pragprog.com.

The team that produced this book includes:

Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93778-549-9

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June, 2013

http://pragprog.com

Foreword to the Third Edition

Preface .

Road Map .

Part | — Facets of Ruby

Getting Started
1.1 The Command Prompt

1.2 Installing RubX

1.3 Running Rubz
14 Ruby Documentation: RDoc and ri

Ruby.new

2.1 Ruby Is an Object-Oriented Language

2.2 Some Basic Ruby

2.3 Arrays and Hashes

24 Symbols

2.5 Control Structures

2.6 Regular Expressions

2.7 Blocks and Iterators

2.8 Reading and 'Riting

2.9 Command-Line Arguments
210 Onward and Upward

Classes, Objects, and Variables

3.1 Objects and Attributes

3.2 Classes Working with Other Classes
3.3 Access Control

34 Variables

Containers, Blocks, and Iterators .

4.1 ArraXs
42 Hashes

43 Blocks and Iterators
4.4 Containers Everywhere

Contents

ix
xi

XV

— 0 U1 W W

15
17
20
21
23
24
25
27
28
28

29
32
37
40
43

45
45
47
52
68

10.

11.

12,

Sharing Functionality: Inheritance, Modules, and Mixins
51 Inheritance and Messages

5.2 Modules

5.3 Mixins

5.4 Iterators and the Enumerable Module

5.5 Composing Modules

5.6 Inheritance, Mixins, and Design

Standard Types .
6.1 Numbers
6.2 Strings
6.3 Ranges

Regular Expressions.
7.1 What Regular Expressions Let You Do
7.2 Ruby’s Regular Expressions

7.3 Digging Deeper

74 Advanced Regular Expressions

More About Methods
8.1 Defining a Method

8.2 Calling a Method

Expressions

9.1 Operator Expressions

9.2 Miscellaneous Expressions
9.3 Assignment

9.4 Conditional Execution

9.5 case Expressions

9.6 LooEs
9.7 Variable Scope, Loops, and Blocks

Exceptions, catch, and throw
10.1 The Exception Class
10.2 Handling Exceptions
10.3 Raising Exceptions
10.4 catch and throw

Basic Input and Output .

11.1 What Is an IO Object?

11.2 Opening and Closing Files
11.3 Reading and Writing Files
114 Talking to Networks

11.5 Parsing HTML
Fibers, Threads, and Processes
12.1 Fibers

12.2 Multithreading
12.3 Controlling the Thread Scheduler

Contents ® iv

69
69
73
75
77
77
80

83
83
86
90

93
93
94
96
105

115
115
118

125
126
127
128
132
136
138
142

145
145
146
150
151

153
153
153
154
158
159

161
161
163
167

13.

14.

15.

16.

17.

18.

19.

124 Mutual Exclusion
12.5 Running Multiple Processes

Unit Testmg .
13.1 The Testing Framework

13.2 Structuring Tests

13.3 Organizing and Running Tests
134 RSpec and Shoulda

13.5 Test::Unit assertions

When Trouble Strikes! .

141 Ruby Debugger
14.2 Interactive Ruby

14.3 Editor SuEEort
144 But It Doesn’t Work!
14.5 But It’s Too Slow!

Part Il — Ruby in Its Setting

Ruby and Its World

15.1 Command-Line Arguments
152 Program Termination

15.3 Environment Variables

154 Where Ruby Finds Its Libraries
15.5 RubyGems Integration

15.6 The Rake Build Tool

15.7 Build Environment

Namespaces, Source Files, and Distribution
16.1 Namespaces

16.2 Organizing Your Source

16.3 Distributing and Installing Your Code

Character Encoding

17.1 Encodings
17.2 Source Files

17.3 Transcoding

17.4 Input and Output Encoding
17.5 Default External Encoding
17.6 Encoding Compatibility
17.7 Default Internal Encoding
17.8 Fun with Unicode

Interactive Ruby Shell .
18.1 Command Line
18.2 Commands

Documenting Ruby
19.1 Adding RDoc to Ruby Code
19.2 Adding RDoc to C Extensions

Contents ® v

167
170

175
177
181
183
186
193

195
195
196
197
198
201

209
209
214
214
216
217
222
224

225
225
226
233

239
240
240
245
246
248
249
250
251

253
253
260

263
266
269

20.

21.

22.

23.

24.

19.3 Running RDoc
19.4 Ruby source file documented with RDoc

19.5 C source file documented with RDoc

Ruby and the Web .

20.1 Writing CGI Scripts
202 Using cgi.rb

20.3 Templating Systems
20.4 Cookies

20.5 Choice of Web Servers
20.6 Frameworks

Ruby and Microsoft Windows

21.1 Running Ruby Under Windows
21.2 Win32API

21.3 Windows Automation

Part lll — Ruby Crystallized

The Ruby Language .

22.1 Source File Encoding

222 Source Layout

22.3 The Basic Types

224 Names

22.5 Variables and Constants

22.6 Expressions, Conditionals, and Loops
22.7 Method Definition

22.8 Invoking a Method

22.9 Aliasing

22.10 Class Definition

22.11 Module Definitions

22.12 Access Control

22.13 Blocks, Closures, and Proc Objects
22.14 Exceptions

22.15 catch and throw

Duck Typing

23.1 Classes Aren’t Types

23.2 Coding like a Duck

23.3 Standard Protocols and Coercions
23.4 Walk the Walk, Talk the Talk

Metaprogramming .

241 Objects and Classes

24.2 Singletons

24.3 Inheritance and Visibility

24.4 Modules and Mixins

245 Metaprogramming Class-Level Macros
24.6 Two Other Forms of Class Definition

Contents ® vi

271
272
274

277
277
277
280
284
286
287

289
289
289
290

297
297
297
299
306
308
316
323
327
330
331
333
335
335
339
341

343
344
348
349
355

357
357
360
365
366
372
377

25.

26.

27.

28.

Al.

A2.

247 instance_eval and class_eval

24.8 Hook Methods

249 One Last Example

24.10 Top-Level Execution Environment
2411 The Turtle Graphics Program
Reflection, ObjectSpace, and Distributed Ruby
25.1 Looking at Objects

25.2 Looking at Classes

25.3 Calling Methods Dynamically

25.4 SXstem Hooks

25.5 Tracing Your Program’s Execution
25.6 Behind the Curtain: The Ruby VM
25.7 Marshaling and Distributed Ruby
25.8 Compile Time? Runtime? Anytime!
Locking Ruby in the Safe

26.1 Safe Levels

26.2 Tainted Objects

26.3 Trusted Objects

26.4 Definition of the safe levels

Part IV — Ruby Library Reference

Built-in Classes and Modules

Standard Library

Support .
Al.1 Web Sites

Al2
Al3
Al4

Usenet Newsgroup
Mailing Lists
Bug ReEorting

Bibliography

Index .

Contents ® vii

379
383
388
390
391

393
393
394
396
398
400
402
403
408

409
410
410
411
412

417
729

829
829
830
830
830

831
833

Foreword to the Third Edition

I wrote forewords to the previous two editions of this book. For the first edition, I wrote
about motivation. For the second edition, I wrote about miracles.

For this third edition, I'd like to write about courage. I always admire brave people. People
around Ruby seem to be brave, like the authors of this book. They were brave to jump in to
a relatively unknown language like Ruby. They were brave to try new technology. They
could have happily stayed with an old technology, but they didn’t. They built their own
world using new bricks and mortar. They were adventurers, explorers, and pioneers. By
their effort, we have a fruitful result—Ruby.

Now, I feel that I've created my own universe with help from those brave people. At first, I
thought it was a miniature universe, like the one in “Fessenden’s Worlds.” But now it seems
like a real universe. Countless brave people are now working with Ruby. They challenge
new things every day, trying to make the world better and bigger. I am very glad I am part
of the Ruby world.

I'suppose that even the world itself could not contain the books that should be written. But
now we have the first book, updated to the most recent. Enjoy.

Yukihiro Matsumoto, aka “Matz”

Japan, February 2009
F2H e WEVA

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Preface

This book is a new version of the PickAxe, as Programming Ruby is known to Ruby program-
mers. Itis a tutorial and reference for versions 1.9 and 2.0 of the Ruby programming language.

Ruby 1.9 was a significant departure from previous versions. There are major changes in
string handling, the scoping of block variables, and the threading model. It has a new virtual
machine. The built-in libraries have grown, adding many hundreds of new methods and
almost a dozen new classes. The language now supports scores of character encodings,
making Ruby one of the only programming languages to live fully in the whole world.

Ruby 2.0 is a (fairly minor) incremental improvement on Ruby 1.9.
Why Ruby?

When Andy and I wrote the first edition, we had to explain the background and appeal of
Ruby. Among other things, we wrote, “When we discovered Ruby, we realized that we'd
found what we’d been looking for. More than any other language with which we have
worked, Ruby stays out of your way. You can concentrate on solving the problem at hand,
instead of struggling with compiler and language issues. That’s how it can help you become
a better programmer: by giving you the chance to spend your time creating solutions for
your users, not for the compiler.”

That belief is even stronger today. More than thirteen years later, Ruby is still my language
of choice: I use it for client applications and web applications. I use it to run our publishing
business (our online store, http://pragprog.com, is more than 40,000 lines of Rails code), and I
use it for all those little programming jobs I do just to get things running smoothly.

In all those years, Ruby has progressed nicely. A large number of methods have been added
to the built-in classes and modules, and the size of the standard library (those libraries
included in the Ruby distribution) has grown tremendously. The community now has a
standard documentation system (RDoc), and RubyGems has become the system of choice
for packaging Ruby code for distribution. We have a best-of-breed web application frame-
work, Ruby on Rails, with others waiting in the wings. We are leading the world when it
comes to testing, with tools such as RSpec and Cucumber, and we're working through the
hard problems of packaging and dependency management. We’ve matured nicely.

But Ruby is older than that. The first release of this book happened on Ruby’s 20th birthday
(it was created on February 24, 1993). The release of Ruby 2.0 is a celebration of that
anniversary.

http://pragprog.com
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Newin2.0¢

Preface * xii

Ruby Versions
This version of the PickAxe documents both Ruby 2.0 and Ruby 1.9.3."
Exactly what version of Ruby did I use to write this book? Let’s ask Ruby:

$ ruby -v
ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

This illustrates an important point. Most of the code samples you see in this book are actually
executed each time I format the book. When you see some output from a program, that
output was produced by running the code and inserting the results into the book.

Changes in the Book

Throughout the book I've tried to mark differences between Ruby 1.9 and 2.0 using a small
symbol, like the one here. If you're reading this as an ebook, you’ll see little arrows next to
this flag. Clicking those will take you to the next or previous 2.0 change. One change I didn’t
make: I decided to continue to use the word we when talking about the authors in the body
of the book. Many of the words come from the first edition, and I certainly don’t want to
claim any credit for Andy’s work on that book.

Changes in the Ruby 2.0 Printing

Compared to the major change that occurred between Ruby 1.8 and Ruby 1.9, the update to
Ruby 2 is fairly gentle. This book documents all the updated builtin class changes and the
new keyword arguments. It spends some time looking at lazy enumerators, and at the
updates to the regular expression engine. But, in general, users of Ruby 1.9 will feel right at
home, and folks still using Ruby 1.8 should consider skipping straight to Ruby 2.

Resources

Visit the Ruby website at http://www.ruby-lang.org to see what’s new. Chat with other Ruby
users on the newsgroup or mailing lists (see Appendix 1, Support, on page 829).

And I'd certainly appreciate hearing from you. Comments, suggestions, errors in the text,
and problems in the examples are all welcome. Email us at rubybook@pragprog.com.

If you find errors in the book, you can add them to the errata page.” If you're reading the
PDF version of the book, you can also report an erratum by clicking the link in the page
footers.

You'll find links to the source code for almost all the book’s example code at http://www.prag-
prog.com/titles/ruby4.

1. Ruby version numbering used to follow the same scheme used for many other open source projects.
Releases with even minor version numbers—1.6, 1.8, and so on—were stable, public releases. These
are the releases that are prepackaged and made available on the various Ruby websites. Development
versions of the software had odd minor version numbers, such as 1.5 and 1.7. However, in 2007 Matz
broke with convention and made 1.9 a stable public release of Ruby.

2. http://www.pragprog.com/titles/ruby4/errata.html

http://www.ruby-lang.org
http://www.pragprog.com/titles/ruby4
http://www.pragprog.com/titles/ruby4
http://www.pragprog.com/titles/ruby4/errata.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Acknowledgments ® xiii

Acknowledgments

The first International Ruby Conference had something like 32 attendees. We could all fit
into the tiny hotel bar and talk the night away. Things have changed. The annual conference
now sells out many hundreds of seats within hours, and an increasing number of secondary
conferences have sprung up to meet the needs of folks who can’t get to RubyConf.

As the community has grown, so has Ruby. The language and its libraries are now many
times bigger than they were back when the first edition of this book came out.

And as the language has grown, so has this book. The PickAxe is now massive, mostly
because I still want to document every single built-in class, module, and method. But a book
of this size can never be a solo undertaking. This edition builds on the work from the first
two editions, which included major contributions from Chad Fowler and Andy Hunt. Just
as significant, all three editions have been works created by the Ruby community. On the
mailing lists, in the forums, and on this book’s errata pages, hundreds of people have con-
tributed ideas, code, and corrections to make it better. As always, I owe every one of you a
big “thank you!” for all you have done and for all that you do. The Ruby community is still
as vibrant, interesting, and (mostly) friendly as it ever was—that’s quite an achievement
given the explosive growth we’ve enjoyed.

For the third (tenth anniversary) printing, Wayne E. Seguin was kind enough to check the
section on the wonderful tool RVM, and Luis Lavena checked the section on installing under
Windows, as well as the chapter on running Ruby on Windows. And I'd like to call Anthony
Burns a hero for doing an amazing job of reading through the changes as I was writing them,
but that would take away from the fact that he’s a true hero.’

Getting this book into production has also been a challenge. Kim Wimpsett is the world’s
best copy editor —she’s the only copy editor I know who finds errors in code and fixes XML
markup. Any remaining errors in this book are a result of my mistyping her suggested cor-
rections. And, as we raced to get the book to the printer in time for RubyConf X, Janet Furlow
patiently kept us all on track.

Finally, I'm still deeply indebted to Yukihiro “Matz” Matsumoto, the creator of Ruby.
Throughout this prolonged period of growth and change, he has remained helpful, cheery,
and dedicated to polishing this gem of a language. The friendly and open spirit of the Ruby
community is a direct reflection of the person at its center.

Thank you all. Domo arigato gozaimasu.

Dave Thomas
The Pragmatic Programmers

dave@pragprog.com
June 2013

3. http://www.flickr.com/photos/pragdave/sets/72157625046498937/

http://www.flickr.com/photos/pragdave/sets/72157625046498937/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Preface ® xiv

Notation Conventions
Literal code examples are shown using a sans-serif font:

class SampleCode
def run
#...
end
end

Within the text, Fred#do_something is a reference to an instance method (in this case the method
do_something) of class Fred, Fred.new” is a class method, and Fred::EOF is a class constant. The
decision to use a hash character to indicate instance methods was a tough one. It isn’t valid
Ruby syntax, but we thought that it was important to differentiate between the instance and
class methods of a particular class. When you see us write File.read, you know we're talking
about the class method read. When instead we write File#read, we're referring to the instance
method read. This convention is now standard in most Ruby discussions and documentation.

This book contains many snippets of Ruby code. Where possible, we’ve tried to show what
happens when they run. In simple cases, we show the value of expressions on the same line
as the expression. Here’s an example:

a=1
b =2
a+b # => 3

Here, you can see that the result of evaluating a + b is the value 3, shown to the right of the
arrow. Note that if you were to run this program, you wouldn't see the value 3 output—
you’d need to use a method such as puts to write it out.

At times, we're also interested in the values of assignment statements:

#=>1

a 1
a+ 2 # => 3

If the program produces more complex output, we show it after the program code:

3.times { puts "Hello!" }

produces:

Hello!
Hello!
Hello!

In some of the library documentation, we wanted to show where spaces appear in the output.
You'll see these spaces as _, characters.

Command-line invocations are shown with literal text in a regular font, and parameters you
supply are shown in an ifalic font. Optional elements are shown in brackets.

ruby <flags>" progname <arguments>"

4. In some other Ruby documentation, you may see class methods written as Fred::new. This is perfectly
valid Ruby syntax; we just happen to think that Fred.new is less distracting to read.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Road Map

The main text of this book has four separate parts, each with its own personality and each
addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with some notes on getting Ruby
running on your system followed by a short chapter on some of the terminology and concepts
that are unique to Ruby. This chapter also includes enough basic syntax so that the other
chapters will make sense. The rest of the tutorial is a top-down look at the language. There
we talk about classes and objects, types, expressions, and all the other things that make up
the language. We end with chapters on unit testing and digging yourself out when trouble
strikes.

One of the great things about Ruby is how well it integrates with its environment. Part II,
Ruby in Its Setting, investigates this. Here you’ll find practical information on using Ruby:
using the interpreter options, using irb, documenting your Ruby code, and packaging your
Ruby gems so that others can enjoy them. You'll also find tutorials on some common Ruby
tasks: using Ruby with the Web and using Ruby in a Microsoft Windows environment
(including wonderful things such as native API calls, COM integration, and Windows
Automation). We’ll also touch on using Ruby to access the Internet.

Part 1II, Ruby Crystallized, contains more advanced material. Here you’ll find all the gory
details about the language, the concept of duck typing, the object model, metaprogramming,
tainting, reflection, and marshaling. You could probably speed-read this the first time through,
but we think you’ll come back to it as you start to use Ruby in earnest.

The Ruby Library Reference is Part IV. It’s big. We document more than 1,300 methods in 57
built-in classes and modules (up from 800 methods in 40 classes and modules in the previous
edition). On top of that, we now document the library modules that are included in the
standard Ruby distribution (98 of them).

So, how should you read this book? Well, depending on your level of expertise with pro-
gramming in general and OO in particular, you may initially want to read just a few portions
of the book. Here are our recommendations.

If you're a beginner, you may want to start with the tutorial material in Part I. Keep the
library reference close at hand as you start to write programs. Get familiar with the basic
classes such as Array, Hash, and String. As you become more comfortable in the environment,
you may want to investigate some of the more advanced topics in Part III.

If you're already comfortable with Perl, Python, Java, or Smalltalk, then we suggest reading
Chapter 1, Getting Started, on page 3, which talks about installing and running Ruby, fol-
lowed by the introduction in Chapter 2, Ruby.new, on page 15. From there, you may want

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Road Map ® xvi

to take the slower approach and keep going with the tutorial that follows, or you can skip
ahead to the gritty details starting in Part III, followed by the library reference in Part IV.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the lan-
guage reference in Chapter 22, The Ruby Language, on page 297; skim the library reference;
and then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way
through page by page.

And don't forget, if you run into a problem that you can’t figure out, help is available. For
more information, see Appendix 1, Support, on page 829.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Part]

Facets of Ruby

1.1

CHAPTER 1

Getting Started

Before we start talking about the Ruby language, it would be useful if we helped you get
Ruby running on your computer. That way, you can try sample code and experiment on
your own as you read along. In fact, that’s probably essential if you want to learn Ruby —
get into the habit of writing code as you're reading. We will also show you some different
ways to run Ruby.

The Command Prompt

(Feel free to skip to the next section if you're already comfortable at your system’s command
prompt.)

Although there’s growing support for Ruby in IDEs, you'll probably still end up spending
some time at your system’s command prompt, also known as a shell prompt or just plain
prompt. If you're a Linux user, you're probably already familiar with the prompt. If you don't
already have a desktop icon for it, hunt around for an application called Terminal or xterm.
(On Ubuntu, you can navigate to it using Applications — Accessories — Terminal.) On
Windows, you'll want to run cmd.exe, accessible by typing cmd into the dialog box that appears
when you select Start — Run. On OS X, run Applications — Utilities — Terminal.app.

In all three cases, a fairly empty window will pop up. It will contain a banner and a prompt.
Try typing echo hello at the prompt and hitting Enter (or Return, depending on your keyboard).
You should see hello echoed back, and another prompt should appear.

Directories, Folders, and Navigation

It is beyond the scope of this book to teach the commands available at the prompt, but we
do need to cover the basics of finding your way around.

If you're used to a GUI tool such as Explorer on Windows or Finder on OS X for navigating
to your files, then you'll be familiar with the idea of folders—locations on your hard drive
that can hold files and other folders.

When you're at the command prompt, you have access to these same folders. But, somewhat
confusingly, at the prompt these folders are called directories (because they contain lists of
other directories and files). These directories are organized into a strict hierarchy. On Unix-
based systems (including OS X), there’s one top-level directory, called / (a forward slash).
On Windows, there is a top-level directory for each drive on your system, so you'll find the
top level for your C: drive at C:\ (that’s the drive letter C, a colon, and a backslash).

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 1. Getting Started * 4

The path to a file or directory is the set of directories that you have to traverse to get to it
from the top-level directory, followed by the name of the file or directory itself. Each compo-
nent in this name is separated by a forward slash (on Unix) or a backslash (on Windows).
So, if you organized your projects in a directory called projects under the top-level directory
and if the projects directory had a subdirectory for your time_planner project, the full path to
the README file would be /projects/time_planner/readme.txt on Unix and C:\projects\time_plan-
ner\readme.txt on Windows.

Most operating systems now allow you to create folders with spaces in their names. This is great when
you're working at the GUI level. However, from the command prompt, spaces can be a headache,

because the shell that interprets what you type will treat the spaces in file and folder names as being
parameter separators and not as part of the name. You can get around this, but it generally isn’t worth
the hassle. If you are creating new folders and files, it’s easiest to avoid spaces in their names.

To navigate to a directory, use the cd command. (Because the Unix prompt varies from system
to system, we’ll just use a single dollar sign to represent it here.)

$ cd /projects/time_planner (on Unix)
C:\> cd \projects\time_planner (on Windows)

On Unix boxes, you probably don’t want to be creating top-level directories. Instead, Unix
gives each user their own home directory. So, if your username is dave, your home directory
might be located in /usr/dave, /home/dave, or /Users/dave. At the shell prompt, the special char-
acter ~ (a single tilde) stands for the path to your home directory. You can always change
directories to your home directory using cd ~, which can also be abbreviated to just cd.

To find out the directory you're currently in, you can type pwd (on Unix) or cd on Windows.
So, for Unix users, you could type this:

$ cd /projects/time_planner
$ pwd

/projects/time _planner

$ cd

$ pwd

/Users/dave

On Windows, there’s no real concept of a user’s home directory:

C:\> cd \projects\time_planner
C:\projects\time_planner> cd \projects
C:\projects>

You can create a new directory under the current directory using the mkdir command:

$ cd /projects

$ mkdir expense_tracker

$ cd expense_tracker

$ pwd

/projects/expense _tracker

Notice that to change to the new directory, we could just give its name relative to the current
directory —we don’t have to enter the full path.

report erratum - discuss

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

1.2

Installing Ruby * 5

We suggest you create a directory called pickaxe to hold the code you write while reading
this book:

$ mkdir ~/pickaxe (on Unix)
C:\> mkdir \pickaxe (on Windows)

Get into the habit of changing into that directory before you start work:

$ cd ~/pickaxe (on Unix)
C:\> cd \pickaxe (on Windows)

Installing Ruby

Ruby comes preinstalled on many Linux distributions, and Mac OS X includes Ruby (although
the version of Ruby that comes with OS X is normally several releases behind the current
Ruby version). Try typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system or if you'd like to upgrade to a newer version
(remembering that this book describes Ruby 1.9 and Ruby 2.0), you can install it pretty
simply. What you do next depends on your operating system.

Installing on Windows

There are two options for installing Ruby on Windows. The first is a simple installer pack-
age—download it, and you’ll have Ruby up and running in minutes. The second is slightly
more complex but gives you the flexibility of easily managing multiple Ruby environments
on the same computer at the same time. Whichever option you choose, you'll first need to
download and install a working Ruby.

Install Ruby with Rubylnstaller

The simple solution (and probably the right one to use if you're not planning on running
multiple versions of Ruby at the same time) is Luis Lavena’s RubyInstaller.org.

Simply navigate to http://rubyinstaller.org, click the big DOWNLOAD button, and select the
Ruby version you want. Save the file to your downloads folder, and then run it once it has
downloaded. Click through the Windows nanny warnings, and you’ll come to a conventional
installer. Accept the defaults, and when the installer finishes, you’ll have an entry for Ruby
in your All Programs menu of the Start menu:

Maintenance

| Ruby19.2-p0 *‘—-_
 Interactive Ruby Network
 RubyGems Documentation Server
B Start Command Prompt with Ruby
i Uninstall Ruby 1.9.2-p0

Documentation
J Startup
Sun VirtualBox Guest Additions

Computer

Connect To

Control Panel

Default Programs

1 Back Help and Support

w

—
Select Start Command Prompt with Ruby to open a copy of the Windows command shell with
the environment set up to run Ruby.

http://rubyinstaller.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 1. Getting Started * 6

pik: Install Multiple Ruby Environments

The pik system by Gordon Thiesfeld allows you to manage multiple Ruby interpreters on
the same machine, switching between them easily. Obviously, this isn’t something everyone
needs, so you may want to skip to Source Code from This Book on page 9.

Before you start, make sure you have a working Ruby on your machine, using the instructions
from the previous section to download and use RubyInstaller if necessary.

Then, install pik. Visit http://github.com/vertiginous/pik/downloads. Look near the top for the list
of .msi files, and choose the latest. Double-click the filename to download and install it.

After a few seconds, the Pik Setup dialog box will appear. Accept the defaults, and pik will
be installed.

At this time, you'll probably need to either log out and log back in or (possibly) restart
Windows to get pik successfully integrated into your environment.

Now bring up a Ruby command prompt (Start Command Prompt with Ruby), and type the
following at the prompt:

C:\Users\dave> pik add
** Adding: 193: ruby 1.9.3p0 (2011-10-30) [1386-mingw32]

You've now registered that Ruby interpreter with pik. At any other command prompt, you
can use the pik command to list the Ruby interpreters pik knows about and to tell pik to
make a particular interpreter current:

C:\>pik list
193: ruby 1.9.3p0 (2011-10-30) [1386-mingw32]

C:\>pik use 193

C:\>ruby -v
ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

Having gotten one Ruby registered with pik, let’s install another. We’ll play with JRuby, an
implementation of Ruby written in Java. Before doing this, you’ll need to download the Java
runtime (Google is your friend). Once Java is installed, tell pik to install the JRuby interpreter:

C:\> pik install jruby

** Downloading: http://jruby.org...... downloads/1.5.2/jruby-bin-1.5.2.zip
to: C:\Users\dave\.pik\downloads\jruby-bin-1.5.2.zip

** Extracting: C:\Users\dave\.pik\downloads\jruby-bin-1.5.2.zip

to: C:\Users\dave\.pik\rubies\JRuby-152

done

** Adding: 152: jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d)
(Java HotSpot(TM) Client VM 1.6.0 21) [x86-java]
Located at: C:\Users\dave\.pik\rubies\JRuby-152\bin

You now have two Ruby interpreters managed by pik. You can switch between them at the
command line:

C:\>pik list
152: jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d) (Java H...
193: ruby 1.9.3p0 (2011-10-30) [i1386-mingw32]

http://github.com/vertiginous/pik/downloads
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Installing Ruby * 7

C:\>pik use 152

C:\>jruby -v

jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d)
(Java HotSpot(TM) Client VM 1.6.0 21) [x86-javal

C:\>pik use 193
C:\>ruby -v
ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

If you plan on installing gems that have native code components (that is, they interface to
existing Windows libraries using C code), you'll need a C development environment on
your machine, and you'll need to download and install the Pik development kit.

Now that you're all set up, skip forward to Source Code from This Book on page 9.

Installing on Linux and Mac OS X

One of the interesting things about the various Unix-like systems out there is that their
maintainers all have their own ideas about how to package tools such as Ruby. It is very
nice that they have gone to this trouble, but it also means that if you go with the flow, you'll
need to learn their way of doing things. It also often means that you'll be stuck with what
you're given. So, we're going to take a different approach. We're going to use a system called
the Ruby Version Manager (RVM), written by Wayne E. Seguin. RVM is a tool that lets you
have multiple independent Ruby installations on the same machine. You can switch between
them using a single command. This is wonderful, because you can experiment with new
versions of Ruby while still keeping the old ones on your system. We use RVM to keep a
Ruby environment for the examples in this book that’s isolated from our daily work."

Installing RVM

Although you can install RVM using RubyGems (assuming you already have a working
Ruby on your system), the preferred approach is to install it directly.

Most Unix-like systems will already have all the dependencies installed.” The possible fly
in the ointment is Ubuntu, where the curl utility is not installed by default. Add it before you
start with this:

$ sudo apt-get update
$ sudo apt-get install curl

You install RVM by executing a script that you download from its repository in github.

$ curl -L https://get.rvm.io | bash -s stable

If this makes you nervous, you can always download the script first, inspect it, and then run
it.
$ curl -L get.rvm.io >rvm-installer

$ less rvm-installer
$ bash rvm-installer

1. RVMisn't the only way of managing multiple Ruby installations. You might want to look at rbenv
(https://github.com/sstephenson/rbenv/) or chruby (https://github.com/postmodern/chruby).
2. http://rvm.io/rvm/prerequisites/

https://github.com/sstephenson/rbenv/
https://github.com/postmodern/chruby
http://rvm.io/rvm/prerequisites/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 1. Getting Started * 8

Behind the scenes, either option fetches a script from the RVM git repository and executes
it on your local box. The end result is that RVM is installed in a directory named .rvm beneath
your home directory. At the end of the process, RVM spits out a page or so of information.
You should read it.

You may need to knit RVM into your environment. To find out, have a look at the end of
~/.bashrc. If it doesn’t mention RVM, add the following:

source $HOME/.rvm/scripts/rvm

Once that’s done, start a new terminal window (because RVM gets loaded only when your
.bashrc file executes). Type rvm help, and you should get a summary of RVM usage.’

Before we use RVM to install Ruby, we have to let it install a few things that it will need. To
do that, we need to let RVM install various system libraries and utilities that are used when
building Ruby. First, we have to give it permission to manage packages:

dave@ubuntu:~$ rvm autolibs packages

If you run into problems, Wayne has a great set of hints on the RVM installation page.*

Installing Ruby 2.0 Under RVM

This is where we start to see the payoff. Let’s install Ruby 2.0. (Note that in the following
commands we do not type sudo. One of the joys of RVM is that it does everything inside
your home directory —you don’t have to be privileged to install or use new Ruby versions.)

$ rvm install 2.0.0

RVM first installs the system packages it needs (if any). At this stage, you may be prompted
to enter a password that gives you superuser privileges.’

RVM then downloads the appropriate source code and builds Ruby 2.0. It also installs a few
tools (including irb, RDoc, ri, and RubyGems). Be patient— the process may take five minutes
or so. Once it finishes, you’ll have Ruby 2.0 installed. To use it, type the following;:

dave@ubuntu:~$ rvm use 2.0.0

info: Using ruby 2.0.0

dave@ubuntu:~$ ruby -v

ruby 2.0.0p0 (2013-02-24 revision 39474) [1686-1inux]

This is probably more work than you were expecting. If all you wanted to do was install a
prepacked Ruby, we’'d agree. But what you've really done here is given yourself an incredible
amount of flexibility. Maybe in the future a project comes along that requires that you use
Ruby 1.8.7. That’s not a problem —just use rvm install 1.8.7 to install it, and use rvm use 1.8.7
to switch to it.

The rvm use command applies only to the current terminal session. If you want to make it
apply to all your sessions, issue this command:

$ rvm use --default 2.0.0

3. The website, http://rvm.io/, has even more information.

http://rvm.io/rvm/install/

5. This s the only time you'll need these privileges. Once your system has all the tools it needs, RVM can
do the rest of its work as a regular user.

L

http://rvm.io/
http://rvm.io/rvm/install/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

1.3

Running Ruby * 9

The RubyGems that you install while you're using an RVM-installed Ruby will be added to
that version of Ruby and not installed globally. Do not prepend the gem install command
with a sudo—bad things will happen.

As well as installing stable versions of the Matz Ruby interpreter, RVM will also manage interpreters
from different sources (JRuby, Rubinius, Ruby Enterprise Edition, and so on—rvm list known gives the
full list). It will also install versions of Ruby directly from the developers’ repository — versions that
are not official releases.

The Ruby developers use Subversion (often abbreviated as SVN) as their revision control system, so
you'll need a Subversion client installed on your machine. Once done, you can use RVM to install the
very latest Ruby using rvm install ruby-head or the latest version of the 2.0 branch using rvm install 2.0-
head.

Source Code from This Book

If a code listing is preceded by a filename in a shaded bar, the source is available for down-
load.’ Sometimes, the listings of code in the book correspond to a complete source file. Other
times, the book shows just part of the source in a file—the program file may contain addi-
tional scaffolding to make the code run.

If you're reading this as an ebook, you can download the code for an example by clicking
the heading.

Running Ruby

Now that Ruby is installed, you'd probably like to run some programs. Unlike compiled
languages, you have two ways to run Ruby —you can type in code interactively, or you can
create program files and run them. Typing in code interactively is a great way to experiment
with the language, but for code that’s more complex or that you will want to run more than
once, you'll need to create program files and run them. But, before we go any further, let’s
test to see whether Ruby is installed. Bring up a fresh command prompt, and type this:’

$ ruby -v
ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

If you believe that you should have Ruby installed and yet you get an error saying something
like “ruby: command not found,” then it is likely that the Ruby program is not in your path
—the list of places that the shell searches for programs to run. If you used the Windows
One-Click Installer, make sure you rebooted before trying this command. If you're on Linux
or OS X and you're using RVM, make sure you type rvm use 2.0 before trying to use Ruby.

Interactive Ruby

One way to run Ruby interactively is simply to type ruby at the shell prompt. Here we typed
in the single puts expression and an end-of-file character (which is Ctrl+D on our system).

6. http://pragprog.com/titles/ruby4/code
7. Remember, you may need to use rubyl.9 as the command name if you installed using a package man-
agement system.

report erratum « discuss

http://pragprog.com/titles/ruby4/code
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 1. Getting Started ® 10

This process works, but it’s painful if you make a typo, and you can’t really see what’s going
on as you type.

$ ruby

puts "Hello, world!"
~D

Hello, world!

For most folks, irb—Interactive Ruby —is the tool of choice for executing Ruby interactively.
irb is a Ruby shell, complete with command-line history, line-editing capabilities, and job
control. (In fact, it has its own chapter: Chapter 18, Interactive Ruby Shell, on page 253.) You
run irb from the command line. Once it starts, just type in Ruby code. It will show you the
value of each expression as it evaluates it. Exit an irb session by typing exit or by using the
Ctrl+D.

$ irb

2.0.0 :001 > def sum(nl, n2)
2.0.0 :0027> nl + n2
2.0.0 :003?> end

=> nil

2.0.0 :004 > sum(3,4)

= 7

2.0.0 :005 > sum("cat", "dog")
=> "catdog"

2.0.0 :006 > exit

We recommend that you get familiar with irb so you can try our examples interactively.

Ruby Programs

The normal way to write Ruby programs is to put them in one or more files. You'll use a
text editor (Emacs, vim, Sublime, and so on) or an IDE (such as NetBeans) to create and
maintain these files. You'll then run the files either from within the editor or IDE or from
the command line. I personally use both techniques, typically running from within the editor
for single-file programs and from the command line for more complex ones.

Let’s start by creating a simple Ruby program and running it. Open a command window,
and navigate to the pickaxe directory you created earlier:

$ cd ~/pickaxe (unix)
C:\> cd \pickaxe (windows)

Then, using your editor of choice, create the file myprog.rb, containing the following text.

gettingstarted/myprog.rb
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

(Note that the second string contains the text Time.now between curly braces, not parentheses.)

You can run a Ruby program from a file as you would any other shell script, Perl program,
or Python program. Simply run the Ruby interpreter, giving it the script name as an argument:

$ ruby myprog.rb
Hello, Ruby Programmer
It is now 2013-05-27 12:30:36 -0500

http://media.pragprog.com/titles/ruby4/code/gettingstarted/myprog.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

1.4

Ruby Documentation: RDoc and ri ® 11

On Unix systems, you can use the “shebang” notation as the first line of the program file:*

#!/usr/bin/ruby
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

If you make this source file executable (using, for instance, chmod +x myprog.rb), Unix lets you
run the file as a program:

$./myprog.rb
Hello, Ruby Programmer
It is now 2013-05-27 12:30:36 -0500

You can do something similar under Microsoft Windows using file associations, and you
can run Ruby GUI applications by double-clicking their names in Windows Explorer.

Ruby Documentation: RDoc and ri

As the volume of the Ruby libraries has grown, it has become impossible to document them
all in one book; the standard library that comes with Ruby now contains more than 9,000
methods. Fortunately, an alternative to paper documentation exists for these methods (and
classes and modules). Many are now documented internally using a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and converted
into HTML and ri formats.

Several websites contain a complete set of the RDoc documentation for Ruby.” Browse on
over, and you should be able to find at least some form of documentation for any Ruby
library. The sites are adding new documentation all the time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby distri-
butions now also install the resources used by the ri program.”

To find the documentation for a class, type ri ClassName. For example, the following is the
summary information for the GC class. (To get a list of classes with ri documentation, type
ri with no arguments.)

The GC module provides an interface to Ruby's garbage collection mechanism. Some of
the underlying methods are also available via the ObjectSpace module.

You may obtain information about the operation of the GC through GC::Profiler.
Class methods:

count, disable, enable, malloc allocated size, malloc allocations,

start, stat, stress, stress=

Instance methods:
garbage collect

8. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using
#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

9. Including http://www.ruby-doc.org and http://rubydoc.info

10. If you installed Ruby using rvm, there’s one additional step to get ri documentation available. At a
prompt, enter rvm docs generate.

http://www.ruby-doc.org
http://rubydoc.info
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 1. Getting Started * 12

For information on a particular method, give its name as a parameter:

$ ri GC::enable

Enables garbage collection, returning true if garbage collection was disabled.

GC.disable #=> false
GC.enable #=> true
GC.enable #=> false

If the method you give ri occurs in more than one class or module, ri will list the alternatives.

$ ri assoc
Implementation from Array

Searches through an array whose elements are also arrays comparing obj
with the first element of each contained array using obj.==.

Returns the first contained array that matches (that is, the first associated
array), or nil if no match is found.

See also Array#rassoc

sl = ["colors", "red", "blue", "green"]

s2 = ["letters", "a", "b", "c" 1]

s3 = "foo"

a = [sl, s2, s3]

a.assoc("letters") #=> ["letters", "a", "b", "c"]
a.assoc("foo") #=> nil

(from ruby site)
Implementation from ENV

Returns an Array of the name and value of the environment variable with
name or nil if the name cannot be found.

(from ruby site)
Implementation from Hash

Searches through the hash comparing obj with the key using ==.
Returns the key-value pair (two elements array) or nil if no match is
found. See Array#assoc.

h = {"colors" => ["red", "blue", "green"],

"letters" => ["a", "b", "c"]}
h.assoc("letters") #=> ["letters", ["a", "b", "c"]]
h.assoc("foo") #=> nil

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby Documentation: RDocand ri ® 13

For general help on using ri, type ri --help. In particular, you might want to experiment with
the --format option, which tells ri how to render decorated text (such as section headings). If
your terminal program supports ANSI escape sequences, using --format=ansi will generate a
nice, colorful display. Once you find a set of options you like, you can set them into the Rl
environment variable. Using our shell (zsh), this would be done using the following;:

$ export RI="--format ansi --width 70"

If a class or module isn't yet documented in RDoc format, ask the friendly folks over at sug-
gestions@ruby-doc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you're not a regular visitor to
the shell prompt. But, in reality, it isn’t that difficult, and the power you get from being able
to string together commands this way is often surprising. Stick with it, and you’ll be well
on your way to mastering both Ruby and your computer.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.1

CHAPTER 2

Ruby.new

Most books on programming languages look about the same. They start with chapters on
basic types: integers, strings, and so on. Then they look at expressions, before moving on to
if and while statements. Then, perhaps around Chapter 7 or 8, they’ll start mentioning classes.
We find that somewhat tedious.

Instead, when we designed this book, we had a grand plan (we were younger then). We
wanted to document the language from the top down, starting with classes and objects and
ending with the nitty-gritty syntax details. It seemed like a good idea at the time. After all,
most everything in Ruby is an object, so it made sense to talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write examples
of classes. Throughout our top-down description, we kept coming across low-level details
we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don't call us pragmatic for nothing). We’'d
still describe Ruby starting at the top. But before we did that, we’d add a short chapter that
described all the common language features used in the examples along with the special
vocabulary used in Ruby, a kind of mini-tutorial to bootstrap us into the rest of the book.
And that mini-tutorial is this chapter.

Ruby Is an Object-Oriented Language

Let’s say it again. Ruby is a genuine object-oriented language. Everything you manipulate
is an object, and the results of those manipulations are themselves objects. However, many
languages make the same claim, and their users often have a different interpretation of what
object-oriented means and a different terminology for the concepts they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that we’ll
be using.

When you write object-oriented programs, you're normally looking to model concepts from
the real world. During this modeling process you’ll discover categories of things that need
to be represented in code. In a jukebox, the concept of a “song” could be such a category. In
Ruby, you'd define a class to represent each of these entities. A class is a combination of state

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 2. Ruby.new * 16

(for example, the name of the song) and methods that use that state (perhaps a method to
play the song).

Once you have these classes, you'll typically want to create a number of instances of each.
For the jukebox system containing a class called Song, you'd have separate instances for
popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String of Pearls,” “Small
Talk,” and so on. The word object is used interchangeably with class instance (and being lazy
typists, we’ll probably be using the word object more frequently).

In Ruby, these objects are created by calling a constructor, a special method associated with
a class. The standard constructor is called new.

songl = Song.new("Ruby Tuesday")
song2 = Song.new("Enveloped in Python")
and so on

These instances are both derived from the same class, but they have unique characteristics.
First, every object has a unique object identifier (abbreviated as object ID). Second, you can
define instance variables, variables with values that are unique to each instance. These instance
variables hold an object’s state. Each of our songs, for example, will probably have an instance
variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of functionality
that may be called in the context of the class and (depending on accessibility constraints)
from outside the class. These instance methods in turn have access to the object’s instance
variables and hence to the object’s state. A Song class, for example, might define an instance
method called play. If a variable referenced a particular Song instance, you’d be able to call
that instance’s play method and play that song.

Methods are invoked by sending a message to an object. The message contains the method’s
name, along with any parameters the method may need." When an object receives a message,
it looks into its own class for a corresponding method. If found, that method is executed. If
the method isn’t found...well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is very
natural. Let’s look at some method calls. In this code, we're using puts, a standard Ruby
method that writes its argument(s) to the console, adding a newline after each:

puts "gin joint".length
puts "Rick".index("c")
puts 42.even?

puts sam.play(song)

produces:

9

2

true

duh dum, da dum de dum ...

Each line shows a method being called as an argument to puts. The thing before the period
is called the receiver, and the name after the period is the method to be invoked. The first
example asks a string for its length; the second asks a different string to find the index of the
letter c. The third line asks the number 42 if it is even (the question mark is part of the method

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.2

Some Basic Ruby * 17

name even?). Finally, we ask Sam to play us a song (assuming there’s an existing variable
called sam that references an appropriate object).

It's worth noting here a major difference between Ruby and most other languages. In (say)
Java, you'd find the absolute value of some number by calling a separate function and
passing in that number. You could write this:

num = Math.abs(num) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take care of
the details internally. You simply send the message abs to a number object and let it do the
work:

num -1234 # => -1234
positive = num.abs # => 1234

The same applies to all Ruby objects. In C you’d write strlen(name), but in Ruby it would be
name.length, and so on. This is part of what we mean when we say that Ruby is a genuine
object-oriented language.

Some Basic Ruby

Not many people like to read heaps of boring syntax rules when they’re picking up a new
language, so we're going to cheat. In this section, we’ll hit some of the highlights—the stuff
you'll just need to know if you're going to write Ruby programs. Later, in Chapter 22, The
Ruby Language, on page 297, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We'll write a method that returns a cheery, person-
alized greeting. We'll then invoke that method a couple of times:

def say goodnight(name)

result = "Good night, " + name
return result
end

Time for bed...
puts say goodnight("John-Boy")
puts say goodnight("Mary-Ellen")

produces:

Good night, John-Boy
Good night, Mary-Ellen

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends of
statements as long as you put each statement on a separate line. Ruby comments start with
a # character and run to the end of the line. Code layout is pretty much up to you; indentation
is not significant (but using two-character indentation will make you friends in the commu-
nity if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this case, the
name is say_goodnight) and the method’s parameters between parentheses. (In fact, the
parentheses are optional, but we like to use them.) Ruby doesn’t use braces to delimit the
bodies of compound statements and definitions. Instead, you simply finish the body with
the keyword end. Our method’s body is pretty simple. The first line concatenates the literal
string "Good night," and the parameter name and assigns the result to the local variable result.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 2. Ruby.new * 18

The next line returns that result to the caller. Note that we didn’t have to declare the variable
result; it sprang into existence when we assigned to it.

Having defined the method, we invoke it twice. In both cases, we pass the result to the
method puts, which simply outputs its argument followed by a newline (moving on to the
next line of output):

Good night, John-Boy
Good night, Mary-Ellen

The line

puts say goodnight("John-Boy")

contains two method calls, one to the method say_goodnight and the other to the method puts.
Why does one call have its arguments in parentheses while the other doesn’t? In this case,
it's purely a matter of taste. The following lines are equivalent:

puts say goodnight("John-Boy")
puts(say goodnight("John-Boy"))

However, life isn’t always that simple, and precedence rules can make it difficult to know
which argument goes with which method invocation, so we recommend using parentheses
in all but the simplest cases.

This example also shows some Ruby string objects. Ruby has many ways to create a string
object, but probably the most common is to use string literals, which are sequences of characters
between single or double quotation marks. The difference between the two forms is the
amount of processing Ruby does on the string while constructing the literal. In the single-
quoted case, Ruby does very little. With a few exceptions, what you enter in the string literal
becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions (sequences
that start with a backslash character) and replaces them with some binary value. The most
common of these is \n, which is replaced with a newline character. When a string containing
a newline is output, that newline becomes a line break:

puts "And good night, \nGrandma"

produces:

And good night,
Grandma

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{expression} is replaced by the value of expression. We could
use this to rewrite our previous method:

def say goodnight(name)
result = "Good night, #{name}"
return result

end

puts say goodnight('Pa')

produces:

Good night, Pa

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Some Basic Ruby * 19

When Ruby constructs this string object, it looks at the current value of name and substitutes
it into the string. Arbitrarily complex expressions are allowed in the #{...} construct. In the
following example, we invoke the capitalize method, defined for all strings, to output our
parameter with a leading uppercase letter:

def say goodnight(name)

result = "Good night, #{name.capitalize}"
return result
end

puts say goodnight('uncle')

produces:

Good night, Uncle

For more information on strings, as well as on the other Ruby standard types, see Chapter
6, Standard Types, on page 83.

Finally, we could simplify this method some more. The value returned by a Ruby method
is the value of the last expression evaluated, so we can get rid of the temporary variable and
the return statement altogether. This is idiomatic Ruby.

def say goodnight(name)

"Good night, #{name.capitalize}"
end
puts say goodnight('ma")

produces:

Good night, Ma

We promised that this section would be brief. We have just one more topic to cover: Ruby
names. For brevity, we’ll be using some terms (such as class variable) that we aren’t going to
define here. However, by talking about the rules now, you’ll be ahead of the game when we
actually come to discuss class variables and the like later.

Ruby uses a convention that may seem strange at first: the first characters of a name indicate
how the name is used. Local variables, method parameters, and method names should all
start with a lowercase letter” or an underscore. Global variables are prefixed with a dollar
sign ($), and instance variables begin with an “at” sign (@). Class variables start with two
“at” signs (@@).3 Finally, class names, module names, and constants must start with an
uppercase letter. Samples of different names are given in Table 1, Example variable, class, and
constant names, on page 20.

Following this initial character, a name can be any combination of letters, digits, and
underscores (with the proviso that the character following an @ sign may not be a digit).
However, by convention, multiword instance variables are written with underscores between
the words, and multiword class names are written in MixedCase (with each word capitalized).
Method names may end with the characters ?, !, and =.

2. Ifyour source files use non-ASCII characters (for example, because they’re written in UTF-8 encoding),
all non-ASCII characters are assumed to be lowercase letters.

3. Although we talk about global and class variables here for completeness, you'll find they are rarely
used in Ruby programs. There’s a lot of evidence that global variables make programs harder to
maintain. Class variables are not as dangerous—it’s just that people tend not to use them much.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.3

Chapter 2. Ruby.new * 20

Local Variable: name fish_and_chips x_axis thx1138 _x _26
Instance Variable: @name @point_1 @X @_ @plan9

Class Variable: @@total @@symtab @@N @@x_pos @@SINGLE
Global Variable: ~ $debug $CUSTOMER $_ $plan9 $Global
Class Name: String ActiveRecord MyClass

Constant Name: FEET_PER_MILE DEBUG

Table 1—Example variable, class, and constant names

Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of objects, accessible
using a key. With arrays, the key is an integer, whereas hashes support any object as a key.
Both arrays and hashes grow as needed to hold new elements. It's more efficient to access
array elements, but hashes provide more flexibility. Any particular array or hash can hold
objects of differing types; you can have an array containing an integer, a string, and a floating-
point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements by
supplying an index between square brackets, as the next example shows. Note that Ruby
array indices start at zero.

a=1[1, 'cat', 3.14 1] # array with three elements
puts "The first element is #{a[0]1}"

set the third element

al2] = nil

puts "The array is now #{a.inspect}"

produces:

The first element is 1
The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many languages,
the concept of nil (or null) means “no object.” In Ruby, that’s not the case; nil is an object, just
like any other, that happens to represent nothing. Anyway, let’s get back to arrays and
hashes.

Sometimes creating arrays of words can be a pain, what with all the quotes and commas.
Fortunately, Ruby has a shortcut; %w does just what we want:

a=1['ant', 'bee', 'cat', 'dog', 'elk']
alo] # => "ant"
al3] # => "dog"

this is the same:

a = %w{ ant bee cat dog elk }
al0] # => "ant"

al3] # => "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.
The literal must supply two objects for every entry: one for the key, the other for the value.
The key and value are normally separated by =>.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

24

Symbols ¢ 21

For example, you could use a hash to map musical instruments to their orchestral sections.

inst_section = {

'cello'’ => 'string',
'clarinet' => 'woodwind',
"drum' => 'percussion',
'oboe' => 'woodwind',
'trumpet' => 'brass',
'violin' => 'string'

}

The thing to the left of the => is the key, and the thing to the right is the corresponding value.
Keys in a particular hash must be unique; you can’t have two entries for “drum.” The keys
and values in a hash can be arbitrary objects. You can have hashes where the values are
arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays. In this code, we’ll use
the p method to write the values to the console. This works like puts but displays values such
as nil explicitly.

p inst_section['oboe']

p inst_section['cello']

p inst_section['bassoon']
produces:

"woodwind"

"string"

nil

As the previous example shows, a hash by default returns nil when indexed by a key it doesn’t
contain. Normally this is convenient, because nil means false when used in conditional
expressions. Sometimes you’ll want to change this default. For example, if you're using a
hash to count the number of times each different word occurs in a file, it’s convenient to
have the default value be zero. Then you can use the word as the key and simply increment
the corresponding hash value without worrying about whether you’ve seen that word before.
This is easily done by specifying a default value when you create a new, empty hash. (Have
alook at the full source for the word frequency counter on page 49.)

histogram = Hash.new(0) # The default value is zero
histogram['ruby'] # => 0
histogram['ruby'] = histogram['ruby'] + 1

histogram['ruby'] # => 1

Array and hash objects have many useful methods; see the discussion on page 45, as well
as the reference sections for arrays on page 421 and for hashes on page 521.

Symbols

Often, when programming, you need to create a name for something significant. For example,
you might want to refer to the compass points by name, so you'd write this:

NORTH = 1
EAST = 2
SOUTH = 3
WEST = 4

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 2. Ruby.new ® 22

Then, in the rest of your code, you could use the constants instead of the numbers:

walk (NORTH)
look (EAST)

Most of the time, the actual numeric values of these constants are irrelevant (as long as they
are unique). All you want to do is differentiate the four directions.

Ruby offers a cleaner alternative. Symbols are simply constant names that you don’t have to
predeclare and that are guaranteed to be unique. A symbol literal starts with a colon and is
normally followed by some kind of name:

walk(:north)
look(:east)

There’s no need to assign some kind of value to a symbol —Ruby takes care of that for you.
Ruby also guarantees that no matter where it appears in your program, a particular symbol
will have the same value. That is, you can write the following:

def walk(direction)
if direction == :north
...
end
end

Symbols are frequently used as keys in hashes. We could write our previous example as
this:

inst_section = {

:cello => 'string',

:clarinet => 'woodwind',

:drum => 'percussion',

:oboe => 'woodwind',

rtrumpet => 'brass',

rviolin => 'string'
}
inst_section[:oboe] # => "woodwind"
inst section[:cello] # => "string"

Note that strings aren't the same as symbols...
inst section['cello'] # => nil

In fact, symbols are so frequently used as hash keys that Ruby has a shortcut syntax: you
can use name: value pairs to create a hash if the keys are symbols:

inst _section = {

cello: 'string',
clarinet: 'woodwind',
drum: 'percussion',
oboe: 'woodwind',
trumpet: ‘'brass',
violin: 'string'

}

puts "An oboe is a #{inst section[:oboel} instrument"

produces:

An oboe is a woodwind instrument

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.5

Control Structures ® 23

Control Structures

Ruby has all the usual control structures, such as if statements and while loops. Java, C, and
Perl programmers may well get caught by the lack of braces around the bodies of these
statements. Instead, Ruby uses the keyword end to signify the end of a body of all the control
structures:

today = Time.now

if today.saturday?

puts "Do chores around the house"
elsif today.sunday?

puts "Relax"

else
puts "Go to work"
end
produces:
Go to work

Similarly, while statements are terminated with end:

num_pallets = 0

weight =0

while weight < 100 and num pallets <= 5
pallet = next pallet()
weight += pallet.weight
num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions. For
example, the kernel method gets returns the next line from the standard input stream or nil
when the end of the file is reached. Because Ruby treats nil as a false value in conditions, you
could write the following to process the lines in a file:

while line = gets
puts line.downcase
end

Here, the assignment statement sets the variable line to either the next line of text or nil, and
then the while statement tests the value of the assignment, terminating the loop when it is nil.

Ruby statement modifiers are a useful shortcut if the body of an if or while statement is just a
single expression. Simply write the expression, followed by if or while and the condition. For
example, here’s a simple if statement:

if radiation > 3000
puts "Danger, Will Robinson"
end

Here it is again, rewritten using a statement modifier:

puts "Danger, Will Robinson" if radiation > 3000

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.6

Chapter 2. Ruby.new ® 24

Similarly, this while loop:

square = 4

while square < 1000
square = square*square

end

becomes this more concise version:

square 4
square = square*square while square < 1000

These statement modifiers should seem familiar to Perl programmers.

Regular Expressions

Most of Ruby’s built-in types will be familiar to all programmers. A majority of languages
have strings, integers, floats, arrays, and so on. However, regular expression support is
typically built into only scripting languages, such as Ruby, Perl, and awk. This is a shame,
because regular expressions, although cryptic, are a powerful tool for working with text.
And having them built in, rather than tacked on through a library interface, makes a big
difference.

Entire books have been written about regular expressions (for example, Mastering Regular
Expressions [Fri97]), so we won't try to cover everything in this short section. Instead, we’ll
look at just a few examples of regular expressions in action. You'll find full coverage of reg-
ular expressions in Chapter 7, Regular Expressions, on page 93.

A regular expression is simply a way of specifying a pattern of characters to be matched in
a string. In Ruby, you typically create a regular expression by writing a pattern between
slash characters (/pattern/). And, Ruby being Ruby, regular expressions are objects and can
be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or the
text Python using the following regular expression:

/Perl|Python/

The forward slashes delimit the pattern, which consists of the two things we’re matching,
separated by a pipe character (|). This pipe character means “either the thing on the right or
the thing on the left,” in this case either Perl or Python. You can use parentheses within pat-
terns, just as you can in arithmetic expressions, so you could also have written this pattern
like this:

/P(erl]ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an a followed
by one or more b’s, followed by a c. Change the plus to an asterisk, and /ab*c/ creates a regular
expression that matches one 4, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common examples
are character classes such as \s, which matches a whitespace character (space, tab, newline,
and so on); \d, which matches any digit; and \w, which matches any character that may appear
in a typical word. A dot (.) matches (almost) any character. A table of these character classes
appears in Table 2, Character class abbreviations, on page 101.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.7

Blocks and Iterators ® 25

We can put all this together to produce some useful regular expressions:

/\did:\d\d:\d\d/ # a time such as 12:34:56

/Perl.*Python/ # Perl, zero or more other chars, then Python
/Perl Python/ # Perl, a space, and Python

/Perl *Python/ # Perl, zero or more spaces, and Python

/Perl +Python/ # Perl, one or more spaces, and Python
/Perl|s+Python/ # Perl, whitespace characters, then Python

/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Once you have created a pattern, it seems a shame not to use it. The match operator =~ can
be used to match a string against a regular expression. If the pattern is found in the string,
=~ returns its starting position; otherwise, it returns nil. This means you can use regular
expressions as the condition in if and while statements. For example, the following code
fragment writes a message if a string contains the text Perl or Python:

line = gets
if line =~ /Perl|Python/

puts "Scripting language mentioned: #{line}"
end

The part of a string matched by a regular expression can be replaced with different text using
one of Ruby’s substitution methods:

line = gets
newline = line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby'
newerline = newline.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby'

You can replace every occurrence of Perl and Python with Ruby using this:

line = gets
newline = line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Blocks and Iterators

This section briefly describes one of Ruby’s particular strengths. We're about to look at code
blocks, which are chunks of code you can associate with method invocations, almost as if
they were parameters. This is an incredibly powerful feature. One of our reviewers comment-
ed at this point: “This is pretty interesting and important, so if you weren’t paying attention
before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anonymous
inner classes), to pass around chunks of code (but they’re more flexible than C’s function
pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do and end. This is a code
block:

{ puts "Hello" }

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 2. Ruby.new ® 26

This is also a code block:

do
club.enroll(person)
person.socialize
end

Why are there two kinds of delimiter? It's partly because sometimes one feels more natural
to write than another. It’s partly too because they have different precedences: the braces
bind more tightly than the do/end pairs. In this book, we try to follow what is becoming a
Ruby standard and use braces for single-line blocks and do/end for multiline blocks.

All you can do with a block is associate it with a call to a method. You do this by putting the
start of the block at the end of the source line containing the method call.

For example, in the following code, the block containing puts "Hi" is associated with the call
to the method greet (which we don’t show):

greet { puts "Hi" }

If the method has parameters, they appear before the block:

verbose greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield
statement. You can think of yield as being something like a method call that invokes the block
associated with the call to the method containing the yield.

The following example shows this in action. We define a method that calls yield twice. We
then call this method, putting a block on the same line, after the call (and after any arguments
to the method).*

def call block
puts "Start of method"
yield
yield
puts "End of method"
end

call block { puts "In the block" }

produces:

Start of method
In the block

In the block
End of method

The code in the block (puts "In the block") is executed twice, once for each call to yield.

You can provide arguments to the call to yield, and they will be passed to the block. Within
the block, you list the names of the parameters to receive these arguments between vertical
bars (Jparams...]). The following example shows a method calling its associated block twice,
passing the block two arguments each time:

4. Some people like to think of the association of a block with a method as a kind of argument passing.
This works on one level, but it isn’t really the whole story. You may be better off thinking of the block
and the method as coroutines, which transfer control back and forth between themselves.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.8

Reading and 'Riting ® 27

def who says what
yield("Dave", "hello")
yield("Andy", "goodbye")
end

who says what {|person, phrase| puts "#{person} says #{phrase}"}
produces:

Dave says hello
Andy says goodbye

Code blocks are used throughout the Ruby library to implement iferators, which are methods
that return successive elements from some kind of collection, such as an array:

animals = %w(ant bee cat dog) # create an array
animals.each {|animal| puts animal } # iterate over the contents

produces:
ant
bee
cat
dog

Many of the looping constructs that are built into languages such as C and Java are simply
method calls in Ruby, with the methods invoking the associated block zero or more times:

['cat', 'dog', 'horse'].each {|name| print name, " " }
5.times { print "*" }

3.upto(6) {]i| print i}

('a'..'e').each {|char| print char }

puts

produces:

cat dog horse *****3456abcde

Here we ask an array to call the block once for each of its elements. Then, object 5 calls a
block five times. Rather than use for loops, in Ruby we can ask the number 3 to call a block,
passing in successive values until it reaches 6. Finally, the range of characters from a to e
invokes a block using the method each.

Reading and 'Riting

Ruby comes with a comprehensive I/O library. However, in most of the examples in this
book, we’ll stick to a few simple methods. We’ve already come across two methods that do
output: puts writes its arguments with a newline after each; print also writes its arguments
but with no newline. Both can be used to write to any I/O object, but by default they write
to standard output.

Another output method we use a lot is printf, which prints its arguments under the control
of a format string (just like printf in C or Perl):
printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")

produces:

Number: 1.23,
String: hello

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.9

2.10

Chapter 2. Ruby.new ® 28

In this example, the format string "Number: %5.2f\nString: %s\n" tells printf to substitute in a
floating-point number (with a minimum of five characters, two after the decimal point) and
a string. Notice the newlines (\n) embedded in the string; each moves the output onto the
next line.

You have many ways to read input into your program. Probably the most traditional is to
use the method gets, which returns the next line from your program’s standard input stream:

line = gets
print line

Because gets returns nil when it reaches the end of input, you can use its return value in a
loop condition. Notice that in the following code the condition to the while is an assignment:
we store whatever gets returns into the variable line and then test to see whether that returned
value was nil or false before continuing;:

while line = gets
print line
end

Command-Line Arguments

When you run a Ruby program from the command line, you can pass in arguments. These
are accessible in two different ways.

First, the array ARGV contains each of the arguments passed to the running program. Create
a file called cmd_line.rb that contains the following:

puts "You gave #{ARGV.size} arguments"
p ARGV

When we run it with arguments, we can see that they get passed in:

$ ruby cmd_line.rb ant bee cat dog
You gave 4 arguments
["ant", "bee", "Cat", "ng"]

Often, the arguments to a program are the names of files that you want to process. In this
case, you can use a second technique: the variable ARGF is a special kind of I/O object that
acts like all the contents of all the files whose names are passed on the command line (or
standard input if you don’t pass any filenames). We’ll look at that some more in ARGF, on
page 213.

Onward and Upward

That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby. We
took a look at objects, methods, strings, containers, and regular expressions; saw some simple
control structures; and looked at some rather nifty iterators. We hope this chapter has given
you enough ammunition to be able to attack the rest of this book.

It’s time to move on and move up—up to a higher level. Next, we’ll be looking at classes
and objects, things that are at the same time both the highest-level constructs in Ruby and
the essential underpinnings of the entire language.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 3

Classes, Objects, and Variables

From the examples we’ve shown so far, you may be wondering about our earlier assertion
that Ruby is an object-oriented language. Well, this chapter is where we justify that claim.
We're going to be looking at how you create classes and objects in Ruby and at some of the
ways that Ruby is more powerful than most object-oriented languages.

As we saw on page 15, everything we manipulate in Ruby is an object. And every object in
Ruby was generated either directly or indirectly from a class. In this chapter, we'll look in
more depth at creating and manipulating those classes.

Let’s give ourselves a simple problem to solve. Let’s say that we're running a secondhand
bookstore. Every week, we do stock control. A gang of clerks uses portable bar-code scanners
to record every book on our shelves. Each scanner generates a simple comma-separated
value (CSV) file containing one row for each book scanned. The row contains (among other
things) the book’s ISBN and price. An extract from one of these files looks something like
this:

tut_classes/stock_stats/data.csv
"Date","ISBN","Price"
"2013-04-12","978-1-9343561-0-4",39.45
"2013-04-13","978-1-9343561-6-6",45.67
"2013-04-14","978-1-9343560-7-4",36.95

Our job is to take all the CSV files and work out how many of each title we have, as well as
the total list price of the books in stock.

Whenever you're designing OO systems, a good first step is to identify the things you're
dealing with. Typically each type of thing becomes a class in your final program, and the
things themselves are instances of these classes.

It seems pretty clear that we’ll need something to represent each data reading captured by
the scanners. Each instance of this will represent a particular row of data, and the collection
of all of these objects will represent all the data we’ve captured.

Let’s call this class BookInStock. (Remember, class names start with an uppercase letter, and
method names normally start with a lowercase letter.)

class BookInStock
end

http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/data.csv
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 3. Classes, Objects, and Variables * 30

As we saw in the previous chapter, we can create new instances of this class using new:

a_book = BookInStock.new
another_book = BookInStock.new

After this code runs, we’'d have two distinct objects, both of class BookInStock. But, besides
that they have different identities, these two objects are otherwise the same —there’s nothing
to distinguish one from the other. And, what’s worse, these objects actually don’t hold any
of the information we need them to hold.

The best way to fix this is to provide the objects with an initialize method. This lets us set the
state of each object as it is constructed. We store this state in instance variables inside the
object. (Remember instance variables? They're the ones that start with an @ sign.) Because
each object in Ruby has its own distinct set of instance variables, each object can have its
own unique state.

So, here’s our updated class definition:

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

end

initialize is a special method in Ruby programs. When you call BookinStock.new to create a new
object, Ruby allocates some memory to hold an uninitialized object and then calls that object’s
initialize method, passing in any parameters that were passed to new. This gives you a chance
to write code that sets up your object’s state.

For class BookinStock, the initialize method takes two parameters. These parameters act just
like local variables within the method, so they follow the local variable naming convention
of starting with a lowercase letter. But, as local variables, they would just evaporate once
the initialize method returns, so we need to transfer them into instance variables. This is very
common behavior in an initialize method —the intent is to have our object set up and usable
by the time initialize returns.

This method also illustrates something that often trips up newcomers to Ruby. Notice how
we say @isbn = isbn. It’s easy to imagine that the two variables here, @isbn and isbn, are
somehow related —it looks like they have the same name. But they don’t. The former is an
instance variable, and the “at” sign is actually part of its name.

Finally, this code illustrates a simple piece of validation. The Float method takes its argument
and converts it to a floating-point number,' terminating the program with an error if that
conversion fails. (Later in the book we’ll see how to handle these exceptional situations.)
What we’re doing here is saying that we want to accept any object for the price parameter as
long as that parameter can be converted to a float. We can pass in a float, an integer, and
even a string containing the representation of a float, and it will work. Let’s try this now.
We'll create three objects, each with different initial state. The p method prints out an internal
representation of an object. Using it, we can see that in each case our parameters got trans-
ferred into the object’s state, ending up as instance variables:

1. Yes, we know. We shouldn’t be holding prices in inexact old floats. Ruby has classes that hold fixed-
point values exactly, but we want to look at classes, not arithmetic, in this section.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 3. Classes, Objects, and Variables * 31

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

end

bl = BookInStock.new("isbnl", 3)
p bl

b2 = BookInStock.new("isbn2", 3.14)
p b2

b3 = BookInStock.new("isbn3", "5.67")

p b3

produces:

#<BookInStock:0x007fac4910f3e0 @isbn="isbnl", @price=3.0>

#<BookInStock:0x007fac4910f0cOd @isbn="isbn2", @price=3.14>
#<BookInStock:0x007fac4910edad @isbn="isbn3", @price=5.67>

Why did we use the p method to write out our objects, rather than puts? Well, let’s repeat
the code using puts:

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

end

bl = BookInStock.new("isbnl", 3)
puts bl

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", "5.67")
puts b3

produces:

#<BookInStock:0x007fb424847468>
#<BookInStock:0x007fb424847238>
#<BookInStock:0x007fb424847058>

Remember, puts simply writes strings to your program’s standard output. When you pass
it an object based on a class you wrote, it doesn’t really know what to do with it, so it uses
a very simple expedient: it writes the name of the object’s class, followed by a colon and the
object’s unique identifier (a hexadecimal number). It puts the whole lot inside #<...>.

Our experience tells us that during development we’ll be printing out the contents of a
BookInStock object many times, and the default formatting leaves something to be desired.
Fortunately, Ruby has a standard message, to_s, that it sends to any object it wants to render
as a string. So, when we pass one of our BookinStock objects to puts, the puts method calls to_s

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

3.1

Chapter 3. Classes, Objects, and Variables * 32

in that object to get its string representation. So, let’s override the default implementation
of to_s to give us a better rendering of our objects:

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
def to s
"ISBN: #{@isbn}, price: #{@price}"
end
end

bl = BookInStock.new("isbnl", 3)

puts bl

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", "5.67")
puts b3

produces:
ISBN: isbnl, price: 3.0

ISBN: isbn2, price: 3.14
ISBN: isbn3, price: 5.67

There’s something going on here that’s both trivial and profound. See how the values we
set into the instance variables @isbn and @price in the initialize method are subsequently
available in the to_s method? That shows how instance variables work —they're stored with
each object and available to all the instance methods of those objects.

Objects and Attributes

The BookInStock objects we’ve created so far have an internal state (the ISBN and price). That
state is private to those objects —no other object can access an object’s instance variables. In
general, this is a Good Thing. It means that the object is solely responsible for maintaining
its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then you
can’t do anything with it. You'll normally define methods that let you access and manipulate
the state of an object, allowing the outside world to interact with the object. These externally
visible facets of an object are called its attributes.

For our BookinStock objects, the first thing we may need is the ability to find out the ISBN and
price (so we can count each distinct book and perform price calculations). One way of doing
that is to write accessor methods:

class BookInStock
def initialize(isbn, price)

@isbn = isbn

@price = Float(price)
end
def isbn

@isbn

end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Objects and Attributes * 33

def price
@price
end
..
end

book = BookInStock.new("isbnl", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:
ISBN = isbnl
Price = 12.34

Here we’ve defined two accessor methods to return the values of the two instance variables.
The method isbn, for example, returns the value of the instance variable @isbn (because the
last thing executed in the method is the expression that simply evaluates the @isbn variable).

Because writing accessor methods is such a common idiom, Ruby provides a convenient
shortcut. attr_reader creates these attribute reader methods for you:

class BookInStock
attr reader :isbn, :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
..
end

book = BookInStock.new("isbnl", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:
ISBN = isbnl
Price = 12.34

This is the first time we’ve used symbols in this chapter. As we discussed on page 21, symbols
are just a convenient way of referencing a name. In this code, you can think of :isbn as
meaning the name isbn and think of plain isbn as meaning the value of the variable. In this
example, we named the accessor methods isbn and price. The corresponding instance variables
are @isbn and @price. These accessor methods are identical to the ones we wrote by hand
earlier.

There’s a common misconception, particularly among people who come from languages
such as Java and C#, that the attr_reader declaration somehow declares instance variables. It
doesn’t. It creates the accessor methods, but the variables themselves don’t need to be declared
—they just pop into existence when you use them. Ruby completely decouples instance
variables and accessor methods, as we’ll see in Virtual Attributes, on page 35.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 3. Classes, Objects, and Variables * 34

Writable Attributes

Sometimes you need to be able to set an attribute from outside the object. For example, let’s
assume that we have to discount the price of some titles after reading in the raw scan data.

In languages such as C# and Java, you'd do this with setter functions:

class JavaBookInStock { // Java code
private double price;
public double getPrice() {
return price;

}

public void setPrice(double newPrice) {
_price = newPrice;

}

}
b = new JavaBookInStock(....);
b.setPrice(calculate discount(b.getPrice()));

In Ruby, the attributes of an object can be accessed as if they were any other variable. We
saw this earlier with phrases such as book.isbn. So, it seems natural to be able to assign to
these variables when you want to set the value of an attribute. You do that by creating a
Ruby method whose name ends with an equals sign. These methods can be used as the target
of assignments:

class BookInStock
attr_reader :isbn, :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price=(new price)
@price = new price
end

...
end

book = BookInStock.new("isbnl", 33.80)

puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

produces:
ISBN = isbnl
Price = 33.8

New price = 25.349999999999998

The assignment book.price = book.price * 0.75 invokes the method price= in the book object,
passing it the discounted price as an argument. If you create a method whose name ends
with an equals sign, that name can appear on the left side of an assignment.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Objects and Attributes ® 35

Again, Ruby provides a shortcut for creating these simple attribute-setting methods. If you
want a write-only accessor, you can use the form attr_writer, but that’s fairly rare. You're far
more likely to want both a reader and a writer for a given attribute, so you'll use the handy-
dandy attr_accessor method:

class BookInStock
attr reader :isbn
attr accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
...
end

book = BookInStock.new("isbnl", 33.80)

puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

produces:

ISBN = isbnl

Price = 33.8

New price = 25.349999999999998
Virtual Attributes

These attribute-accessing methods do not have to be just simple wrappers around an object’s
instance variables. For example, you may want to access the price as an exact number of
cents, rather than as a floating-point number of dollars.”

class BookInStock

attr_reader risbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price_in cents
Integer(price*100 + 0.5)
end
...
end

2. We multiply the floating-point price by 100 to get the price in cents but then add 0.5 before converting
to an integer. Why? Because floating-point numbers don’t always have an exact internal representation.
When we multiply 33.8 by 100, we get 3379.99999999999954525265. The Integer method would truncate
this to 3379. Adding 0.5 before calling Integer rounds up the floating-point value, ensuring we get the
best integer representation. This is a good example of why you want to use BigDecimal, not Float, in
financial calculations.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 3. Classes, Objects, and Variables * 36

book = BookInStock.new("isbnl", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price in cents}"

produces:

Price = 33.8
Price in cents = 3380

We can take this even further and allow people to assign to our virtual attribute, mapping
the value to the instance variable internally:

class BookInStock

attr_reader tisbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price_in_cents
Integer(price*100 + 0.5)
end

def price_in_cents=(cents)
@price = cents / 100.0
end
...
end

book = BookInStock.new("isbnl", 33.80)

puts "Price = #{book.price}"

puts "Price in cents = #{book.price in_cents}"
book.price in cents = 1234

puts "Price #{book.price}"

puts "Price in cents #{book.price in_cents}"

produces:

Price = 33.8
Price in cents = 3380
Price = 12.34

Price in cents = 1234

Here we’ve used attribute methods to create a virtual instance variable. To the outside world,
price_in_cents seems to be an attribute like any other. Internally, though, it has no corresponding
instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Construction
[Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding the difference
between instance variables and calculated values, you are shielding the rest of the world
from the implementation of your class. You're free to change how things work in the future
without impacting the millions of lines of code that use your class. This is a big win.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

3.2

Classes Working with Other Classes ® 37

Attributes, Instance Variables, and Methods

This description of attributes may leave you thinking that they’re nothing more than methods
—why’d we need to invent a fancy name for them? In a way, that’s absolutely right. An
attribute is just a method. Sometimes an attribute simply returns the value of an instance
variable. Sometimes an attribute returns the result of a calculation. And sometimes those
funky methods with equals signs at the end of their names are used to update the state of
an object. So, the question is, where do attributes stop and regular methods begin? What
makes something an attribute and not just a plain old method? Ultimately, that’s one of
those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how that state
is to appear on the outside (to users of your class). The internal state is held in instance
variables. The external state is exposed through methods we're calling attributes. And the
other actions your class can perform are just regular methods. It really isn't a crucially
important distinction, but by calling the external state of an object its attributes, you're
helping clue people in to how they should view the class you've written.

Classes Working with Other Classes

Our original challenge was to read in data from multiple CSV files and produce various
simple reports. So far, all we have is BookinStock, a class that represents the data for one book.

During OO design, you identify external things and make them classes in your code. But
there’s another source of classes in your designs. There are the classes that correspond to
things inside your code itself. For example, we know that the program we’re writing will
need to consolidate and summarize CSV data feeds. But that’s a very passive statement.
Let’s turn it into a design by asking ourselves what does the summarizing and consolidating.
And the answer (in our case) is a CSV reader. Let’s make it into a class as follows:

class CsvReader
def initialize
...
end

def read in csv data(csv_file name)
...
end

def total value in_ stock
...
end

def number of each isbn
...
end
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 3. Classes, Objects, and Variables * 38

We'd call it using something like this:

reader = CsvReader.new
reader.read_in csv_data("filel.csv")
reader.read_in csv_data("file2.csv")

puts "Total value in stock = #{reader.total value in stock}"

We need to be able to handle multiple CSV files, so our reader object needs to accumulate
the values from each CSV file it is fed. We’ll do that by keeping an array of values in an
instance variable. And how shall we represent each book’s data? Well, we just finished
writing the BookInStock class, so that problem is solved. The only other question is how we
parse data in a CSV file. Fortunately, Ruby comes with a good CSV library (which has a brief
description on page 741). Given a CSV file with a header line, we can iterate over the
remaining rows and extract values by name:

tut_classes/stock_stats/csv_reader.rb
class CsvReader
def initialize
@books_in stock = []
end

def read in csv_data(csv_file name)
CSV.foreach(csv_file name, headers: true) do |row|
@books_in stock << BookInStock.new(row["ISBN"], row["Price"])
end
end
end

Just because you're probably wondering what’s going on, let’s dissect that read_in_csv_data
method. On the first line, we tell the CSV library to open the file with the given name. The
headers: true option tells the library to parse the first line of the file as the names of the columns.

The library then reads the rest of the file, passing each row in turn to the block (the code
between do and end).3 Inside the block, we extract the data from the ISBN and Price columns
and use that data to create a new BookInStock object. We then append that object to an instance
variable called @books_in_stock. And just where does that variable come from? It's an array
that we created in the initialize method.

Again, this is the pattern you want to aim for. Your initialize method sets up an environment
for your object, leaving it in a usable state. Other methods then use that state.

So, let’s turn this from a code fragment into a working program. We're going to organize
our source into three files. The first, book_in_stock.rb, will contain the definition of the class
BookInStock. The second, csv_reader.rb, is the source for the CsvReader class. Finally, a third file,
stock_stats.rb, is the main driver program. We’ll start with book_in_stock.rb:

3. If you encounter an error along the lines of "Float’: can’t convert nil into Float (TypeError)" when you
run this code, you likely have extra spaces at the end of the header line in your CSV data file. The CSV
library is pretty strict about the formats it accepts.

http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/csv_reader.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Classes Working with Other Classes ® 39

tut_classes/stock_stats/book_in_stock.rb
class BookInStock
attr reader :isbn, :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

end

Here’s the csv_reader.rb file. The CsvReader class has two external dependencies: it needs the
standard CSV library, and it needs the BookinStock class that’s in the file book_in_stock.rb. Ruby
has a couple of helper methods that let us load external files. In this file, we use require to
load in the Ruby CSV library and require_relative to load in the book_in_stock file we wrote. (We
use require_relative for this because the location of the file we're loading is relative to the file
we're loading it from —they’re both in the same directory.)

tut_classes/stock_stats/csv_reader.rb
require 'csv'
require relative 'book in stock'

class CsvReader
def initialize
@books _in stock = []
end

def read in csv_data(csv_file name)
CSV.foreach(csv_file name, headers: true) do |row|
@books _in stock << BookInStock.new(row["ISBN"], row["Price"])
end
end
def total value in stock # later we'll see how to use inject to sum a collection
sum = 0.0
@books in stock.each {|book| sum += book.price}
sum
end

def number of each isbn
...
end
end

And finally, here’s our main program, in the file stock_stats.rb:
tut_classes/stock_stats/stock_stats.rb
require relative 'csv reader'

reader = CsvReader.new

ARGV.each do |csv_file name|
STDERR.puts "Processing #{csv_file name}"
reader.read_in csv_data(csv_file name)
end

puts "Total value = #{reader.total value in stock}"

http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/book_in_stock.rb
http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/csv_reader.rb
http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/stock_stats.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

33

Chapter 3. Classes, Objects, and Variables * 40

Again, this file uses require_relative to bring in the library it needs (in this case, the csv_reader.rb
file). It uses the ARGV variable to access the program’s command-line arguments, loading
CSV data for each file specified on the command line.

We can run this program using the simple CSV data file as we showed on page 29:

$ ruby stock_stats.rb data.csv
Processing data.csv
Total value = 122.07000000000001

Do we need three source files for this? No. In fact, most Ruby developers would probably
start off by sticking all this code into a single file—it would contain both class definitions as
well as the driver code. But as your programs grow (and almost all programs grow over
time), you'll find that this starts to get cumbersome. You'll also find it harder to write auto-
mated tests against the code if it is in a monolithic chunk. Finally, you won't be able to reuse
classes if they're all bundled into the final program.

Anyway, let’s get back to our discussion of classes.

Access Control

When designing a class interface, it’s important to consider just how much of your class
you’ll be exposing to the outside world. Allow too much access into your class, and you risk
increasing the coupling in your application —users of your class will be tempted to rely on
details of your class’s implementation, rather than on its logical interface. The good news is
that the only easy way to change an object’s state in Ruby is by calling one of its methods.
Control access to the methods, and you’ve controlled access to the object. A good rule of
thumb is never to expose methods that could leave an object in an invalid state.

Ruby gives you three levels of protection:

® Public methods can be called by anyone—no access control is enforced. Methods are
public by default (except for initialize, which is always private).

® Protected methods can be invoked only by objects of the defining class and its subclasses.
Access is kept within the family.

® Private methods cannot be called with an explicit receiver—the receiver is always the
current object, also known as self. This means that private methods can be called only
in the context of the current object; you can’t invoke another object’s private methods.

The difference between “protected” and “private” is fairly subtle and is different in Ruby
than in most common OO languages. If a method is protected, it may be called by any instance
of the defining class or its subclasses. If a method is private, it may be called only within the
context of the calling object—it is never possible to access another object’s private methods
directly, even if the object is of the same class as the caller.

Ruby differs from other OO languages in another important way. Access control is determined
dynamically, as the program runs, not statically. You will get an access violation only when
the code attempts to execute the restricted method.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Access Control ® 41

Specifying Access Control

You specify access levels to methods within class or module definitions using one or more
of the three functions public, protected, and private. You can use each function in two different
ways.

If used with no arguments, the three functions set the default access control of subsequently
defined methods. This is probably familiar behavior if you're a C++ or Java programmer,
where you’d use keywords such as public to achieve the same effect:

class MyClass

def methodl # default is 'public'
#...
end

protected # subsequent methods will be 'protected'
def method2 # will be 'protected'
#...
end

private # subsequent methods will be 'private'
def method3 # will be 'private'’
#...
end

public # subsequent methods will be 'public'
def method4 # so this will be 'public'
#...
end
end

Alternatively, you can set access levels of named methods by listing them as arguments to
the access control functions:

class MyClass
def methodl

end
def method2
end
... and so on
public :methodl, :method4
protected :method2
private :method3
end

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this rule,
we’ll make the methods that do the debits and credits private, and we’ll define our external
interface in terms of transactions.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 3. Classes, Objects, and Variables ® 42

class Account
attr accessor :balance
def initialize(balance)
@balance = balance
end
end

class Transaction

def initialize(account a, account b)
@account a = account a
@account b = account b

end

private

def debit(account, amount)
account.balance -= amount

end

def credit(account, amount)
account.balance += amount

end

public

#. ..
def transfer(amount)
debit(@account a, amount)
credit(@account b, amount)
end
#. ..
end

savings = Account.new(100)
checking = Account.new(200)

trans = Transaction.new(checking, savings)
trans.transfer(50)

Protected access is used when objects need to access the internal state of other objects of the
same class. For example, we may want to allow individual Account objects to compare their
cleared balances but to hide those balances from the rest of the world (perhaps because we
present them in a different form):

class Account
attr reader :cleared balance # accessor method 'cleared balance'
protected :cleared balance # but make it protected

def greater balance than?(other)
@cleared_balance > other.cleared balance
end
end

Because cleared_balance is protected, it’s available only within Account objects.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

34

Variables ® 43

Variables

Now that we’ve gone to the trouble to create all these objects, let’s make sure we don't lose
them. Variables are used to keep track of objects; each variable holds a reference to an object.
Let’s confirm this with some code:

person = "Tim"

puts "The object in 'person' is a #{person.class}"
puts "The object has an id of #{person.object id}"
puts "and a value of '#{person}'"

produces:

The object in 'person' is a String
The object has an id of 70230663692980
and a value of 'Tim'

On the first line, Ruby creates a new string object with the value Tim. A reference to this
object is placed in the local variable person. A quick check shows that the variable has indeed
taken on the personality of a string, with an object ID, a class, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference to
an object. Objects float around in a big pool somewhere (the heap, most of the time) and are
pointed to by variables. Let’s make the example slightly more complicated:

personl = "Tim"
person2 = personl
personl[0] = 'J'

puts "personl is #{personl}"
puts "person2 is #{person2}"

produces:

personl is Jim
person2 is Jim

What happened here? We changed the first character of personl (Ruby strings are mutable,
unlike Java), but both personl and person2 changed from Tim to Jim.

It all comes back to the fact that variables hold references to objects, not the objects themselves.
Assigning personl to person2 doesn’t create any new objects; it simply copies personl’s object
reference to person2 so that both personl and person2 refer to the same object.

persont —

String
person2 = person i

person2

. persont —
personi[0] ="J /'“

person2

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 3. Classes, Objects, and Variables * 44

Assignment aliases objects, potentially giving you multiple variables that reference the same
object. But can't this cause problems in your code? It can, but not as often as you’d think
(objects in Java, for example, work exactly the same way). In the previous example, for
instance, you could avoid aliasing by using the dup method of String, which creates a new
string object with identical contents:

personl = "Tim"

person2 = personl.dup
personl[0] = "J"

puts "personl is #{personl}"
puts "person2 is #{person2}"

produces:

personl is Jim
person2 is Tim

You can also prevent anyone from changing a particular object by freezing it. Attempt to
alter a frozen object, and Ruby will raise a RuntimeError exception:

personl = "Tim"
person2 = personl
personl.freeze # prevent modifications to the object

person2[0] = "J"
produces:

from prog.rb:4:in “<main>'
prog.rb:4:in “[]=': can't modify frozen String (RuntimeError)

There’s more to say about classes and objects in Ruby. We still have to look at class methods
and at concepts such as mixins and inheritance. We’ll do that in Chapter 5, Sharing Function-
ality: Inheritance, Modules, and Mixins, on page 69. But, for now, know that everything you
manipulate in Ruby is an object and that objects start life as instances of classes. And one of
the most common things we do with objects is create collections of them. But that’s the
subject of our next chapter.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

4.1

CHAPTER4

Containers, Blocks, and lterators

Most real programs deal with collections of data: the people in a course, the songs in your
playlist, the books in the store. Ruby comes with two built-in classes to handle these collec-
tions: arrays and hashes.' Mastery of these two classes is key to being an effective Ruby
programmer. This mastery may take some time, because both classes have large interfaces.

But it isn’t just these classes that give Ruby its power when dealing with collections. Ruby
also has a block syntax that lets you encapsulate chunks of code. When paired with collections,
these blocks become powerful iterator constructs. In this chapter, we’ll look at the two col-
lection classes as well as blocks and iterators.

Arrays

The class Array holds a collection of object references. Each object reference occupies a position
in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A literal array
is simply a list of objects between square brackets.”

a = [3.14159, "pie", 99]
a.class # => Array
a.length # => 3

alo] # => 3.,14159
all] # => "pie"
al2] # => 99

al3] # => nil

b = Array.new
b.class # => Array
b.length # => 0

b[0] = "second"

b[1] = "array"

b # => ["second", "array"]

1. Some languages call hashes associative arrays or dictionaries.

2. Inthe code examples that follow, we're often going to show the value of expressions such as a[0] in a

comment at the end of the line. If you simply typed this fragment of code into a file and executed it
using Ruby, you'd see no output—you’d need to add something like a call to puts to have the values
written to the console.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and lterators ® 46

Arrays are indexed using the [] operator. As with most Ruby operators, this is actually a
method (an instance method of class Array) and hence can be overridden in subclasses. As
the example shows, array indices start at zero. Index an array with a non-negative integer,
and it returns the object at that position or returns nil if nothing is there. Index an array with
a negative integer, and it counts from the end.

=[1,3,5,7, 9]
al-1] #=>9
al-2] #=>7
al-99] # => nil

The following diagram shows this a different way.

_1___, 0 1 2 3 4 5 6
ngae _J-———» 7 6 5 4 3 2 1

= wWow W W i o]

a2] —» e
4 — ®
a[1..3] — [t e wy]
a[1..3] —» (g o]
&1 — [i gu]
@ — [o]

You can also index arrays with a pair of numbers, [start,count]. This returns a new array
consisting of references to count objects starting at position start:

=[1,3,5,7,9]1]
all, 31 # =>[3, 5, 7]
al3, 11 # = [7]
al-3, 21 # => [5, 7]

Finally, you can index arrays using ranges, in which start and end positions are separated
by two or three periods. The two-period form includes the end position; the three-period
form does not:

=[1,3,5, 7,91
all..3] #=>[3, 5 7]
al[l...3] # =>[3, 5]
al[3..3] # => [7]
al-3..-1] # => [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the array.
If used with a single integer index, the element at that position is replaced by whatever is
on the right side of the assignment. Any gaps that result will be filled with nil:

=[1, 3,5, 7,91 #=> [1, 3, 5, 7, 9]
a[l] = 'bat' #=> [1, "bat", 5, 7, 9]
al[-3] = 'cat' #=> [1, "bat", "cat", 7, 9]
a[3] =19, 81 #=> [1, "bat", "“cat", [9, 8], 9]
a[6] = 99 #=> [1, "bat", "cat", [9, 8], 9, nil, 99]

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

4.2

Hashes ® 47

If the index to []= is two numbers (a start and a length) or a range, then those elements in
the original array are replaced by whatever is on the right side of the assignment. If the
length is zero, the right side is inserted into the array before the start position; no elements
are removed. If the right side is itself an array, its elements are used in the replacement. The
array size is automatically adjusted if the index selects a different number of elements than
are available on the right side of the assignment.

a=1[1,3,5, 7,91 #=> [1, 3, 5, 7, 9]

al2, 2] = 'cat' #=> [1, 3, "cat", 9]

al[2, 0] = 'dog' #=> [1, 3, "dog", "cat", 9]

all, 11 =119, 8, 7] #=> [1, 9, 8, 7, "dog", "cat", 9]
alo0..3] =[] #=> ["dog", "cat", 9]

a[5..6] = 99, 98 #=> ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using them, you can treat arrays as
stacks, sets, queues, dequeues, and FIFO queues.

For example, push and pop add and remove elements from the end of an array, so you can
use the array as a stack:

stack = []

stack.push "red"

stack.push "green"

stack.push "blue"

stack # => ["red", "green", "blue"]

stack.pop # => "blue"
stack.pop # => "green"
stack.pop # => "red"
stack #=>[]

Similarly, unshift and shift add and remove elements from the head of an array. Combine shift
and push, and you have a first-in first-out (FIFO) queue.

queue = []

queue.push "red"
queue.push "green"
queue.shift # => "red"
queue.shift # => "green"

The first and last methods return (but don’t remove) the n entries at the head or end of an
array.

array = [1, 2, 3, 4,5, 6, 7]
array.first(4) # => [1, 2, 3, 4]
array.last(4) # => 1[4, 5, 6, 7]

The reference section lists the methods in class Array on page 421. It is well worth firing up
irb and playing with them.

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to arrays in
that they are indexed collections of object references. However, while you index arrays with
integers, you index a hash with objects of any type: symbols, strings, regular expressions,
and so on. When you store a value in a hash, you actually supply two objects—the index,

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and Iterators ® 48

which is normally called the key, and the entry to be stored with that key. You can subse-
quently retrieve the entry by indexing the hash with the same key value that you used to
store it.

The example that follows uses hash literals—a list of key wvalue pairs between braces:

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length # => 3
h['dog'] # => "canine"

h['cow'] = 'bovine'

h[12] = 'dodecine'

h['cat'] = 99

h # => {"dog"=>"canine", "cat"=>99, "donkey"=>"asinine", "cow"=>"bovine",

.. 12=>"dodecine"}

In the previous example, the hash keys were strings, and the hash literal used => to separate
the keys from the values. From Ruby 1.9, there is a new shortcut you can use if the keys are
symbols. In that case, you can still use => to separate keys from values:

h = { :dog => 'canine', :cat => 'feline', :donkey => 'asinine' }
but you can also write the literal by moving the colon to the end of the symbol and dropping
the =>:

h = { dog: 'canine', cat: 'feline', donkey: 'asinine' }

Compared with arrays, hashes have one significant advantage: they can use any object as
an index. And you’ll find something that might be surprising: Ruby remembers the order
in which you add items to a hash. When you subsequently iterate over the entries, Ruby will
return them in that order.

You'll find that hashes are one of the most commonly used data structures in Ruby. The
reference section has a list of the methods implemented by class Hash on page 521.

Word Frequency: Using Hashes and Arrays

Let’s round off this section with a simple program that calculates the number of times each
word occurs in some text. (So, for example, in this sentence, the word the occurs two times.)

The problem breaks down into two parts. First, given some text as a string, return a list of
words. That sounds like an array. Then, build a count for each distinct word. That sounds
like a use for a hash—we can index it with the word and use the corresponding entry to
keep a count.

Let’s start with the method that splits a string into words:

tut_containers/word_freq/words_from_string.rb
def words_from string(string)

string.downcase.scan(/[\w']+/)
end

This method uses two very useful string methods: downcase returns a lowercase version of
a string, and scan returns an array of substrings that match a given pattern. In this case, the
pattern is [\w']+, which matches sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array:

http://media.pragprog.com/titles/ruby4/code/tut_containers/word_freq/words_from_string.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Hashes ® 49

p words from string("But I didn't inhale, he said (emphatically)")

produces:

["but", "i", "didn't", "inhale", "he", "said", "emphatically"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash object indexed
by the words in our list. Each entry in this hash stores the number of times that word occurred.
Let’s say we already have read part of the list, and we have seen the word the already. Then
we’d have a hash that contained this:

{ ..., "the" =>1, ...}

If the variable next_word contained the word the, then incrementing the count is as simple as
this:

counts[next word] += 1

We’d then end up with a hash containing the following:

{ ..., "the" =>2, ...}

Our only problem is what to do when we encounter a word for the first time. We'll try to
increment the entry for that word, but there won't be one, so our program will fail. There
are a number of solutions to this. One is to check to see whether the entry exists before doing
the increment:

if counts.has key?(next word)
counts[next word] += 1
else
counts[next word] =1
end

However, there’s a tidier way. If we create a hash object using Hash.new(0), the parameter, 0
in this case, will be used as the hash’s default value —it will be the value returned if you look
up a key that isn’t yet in the hash. Using that, we can write our count_frequency method:

tut_containers/word_freq/count_frequency.rb
def count frequency(word list)
counts = Hash.new(0)
for word in word list
counts[word] += 1
end
counts
end

p count frequency(["sparky", "the", "cat", "sat", "on", "the", "mat"])
produces:

{"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

One little job left. The hash containing the word frequencies is ordered based on the first
time it sees each word. It would be better to display the results based on the frequencies of
the words. We can do that using the hash’s sort_by method. When you use sort_by, you give
it a block that tells the sort what to use when making comparisons. In our case, we’ll just
use the count. The result of the sort is an array containing a set of two-element arrays, with
each subarray corresponding to a key/entry pair in the original hash. This makes our whole
program:

http://media.pragprog.com/titles/ruby4/code/tut_containers/word_freq/count_frequency.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and lterators ® 50

require relative "words from string.rb"
require relative "count frequency.rb"

raw_text = %{The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count.}

word list = words from string(raw text)

counts = count frequency(word list)

sorted = counts.sort by {|word, count| count}

top five = sorted.last(5)

for i in 0...5 # (this is ugly code--read on

word = top five[i][0] # for a better version)
count = top five[i][1]
puts "#{word}: #{count}"

end

produces:
that: 2
sounds: 2
like: 2
the: 3

a: 6

At this point, a quick test may be in order. To do this, we're going to use a testing framework
called Test::Unit that comes with the standard Ruby distributions. We won't describe it fully
yet (we do that in Chapter 13, Unit Testing, on page 175). For now, we’ll just say that the
method assert_equal checks that its two parameters are equal, complaining bitterly if they
aren’t. We'll use assertions to test our two methods, one method at a time. (That’s one reason
why we wrote them as separate methods—it makes them testable in isolation.)

Here are some tests for the word_from_string method:

require relative 'words from string'
require 'test/unit'

class TestWordsFromString < Test::Unit::TestCase

def test empty string
assert_equal([], words_from_ string(""))
assert_equal([], words_from string(" "))
end

def test single word
assert equal(["cat"], words from string("cat"))
assert equal(["cat"], words from string(" cat "))
end

def test many words
assert equal(["the", "cat", "sat", "on", "the", "mat"],
words from string("the cat sat on the mat"))
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Hashes ® 51

def test ignores punctuation
assert equal(["the", "cat's", "mat"],
words from string("<the!> cat's, -mat-"))
end
end

produces:

Run options:
Running tests:

Finished tests in 0.006458s, 619.3868 tests/s, 929.0802 assertions/s.
4 tests, 6 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

The test starts by requiring the source file containing our words_from_string method, along
with the unit test framework itself. It then defines a test class. Within that class, any methods
whose names start with test are automatically run by the testing framework. The results
show that four test methods ran, successfully executing six assertions.

We can also test that our count of word frequency works:

require relative 'count frequency'
require 'test/unit'

class TestCountFrequency < Test::Unit::TestCase
def test empty list
assert equal({}, count frequency([]))
end
def test single word
assert equal({"cat" => 1}, count frequency(["cat"]))

end
def test two different words
assert equal({"cat" => 1, "sat" => 1}, count frequency(["cat", "sat"]))
end
def test two words with adjacent repeat
assert equal({"cat" => 2, "sat" => 1}, count frequency(["cat", "cat", "sat"]))
end
def test two words with non adjacent repeat
assert equal({"cat" => 2, "sat" => 1}, count frequency(["cat", "sat", "cat"l))
end
end
produces:

Run options:
Running tests:

Finished tests in 0.006327s, 790.2639 tests/s, 790.2639 assertions/s.
5 tests, 5 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

4.3

Chapter 4. Containers, Blocks, and Iterators ® 52

Blocks and Iterators

In our program that wrote out the results of our word frequency analysis, we had the follow-
ing loop:
for i in 0..4
word = top five[i][0]
count = top_ five[i][1]
puts "#{word}: #{count}"
end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What could
be more natural?

It turns out there is something more natural. In a way, our for loop is somewhat too intimate
with the array; it magically knows that we're iterating over five elements, and it retrieves
values in turn from the array. To do this, it has to know that the structure it is working with
is an array of two-element subarrays. This is a whole lot of coupling.

Instead, we could write this code like this:

top_five.each do |word, count]
puts "#{word}: #{count}"
end

The method each is an iterator—a method that invokes a block of code repeatedly. In fact,
some Ruby programmers might write this more compactly as this:

puts top five.map { |word, count| "#{word}: #{count}" }

Just how far you take this is a matter of taste. However you use them, iterators and code
blocks are among the more interesting features of Ruby, so let’s spend a while looking into
them.

Blocks

A block is simply a chunk of code enclosed between either braces or the keywords do and
end. The two forms are identical except for precedence, which we’ll see in a minute. All things
being equal, the current Ruby style seems to favor using braces for blocks that fit on one line
and do/end when a block spans multiple lines:

some_array.each {|value| puts value * 3 }

sum = 0

other array.each do |value]
sum += value
puts value / sum

end

You can think of a block as being somewhat like the body of an anonymous method. Just
like a method, the block can take parameters (but, unlike a method, those parameters appear
at the start of the block between vertical bars). Both the blocks in the preceding example take
a single parameter, value. And, just like a method, the body of a block is not executed when
Ruby first sees it. Instead, the block is saved away to be called later.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 53

Blocks can appear in Ruby source code only immediately after the invocation of some method.
If the method takes parameters, the block appears after these parameters. In a way, you can
almost think of the block as being one extra parameter, passed to that method. Let’s look at
a simple example that sums the squares of the numbers in an array:

sum = 0

[1, 2, 3, 4].each do |value]
square = value * value
sum += square

end

puts sum

produces:

30

The block is being called by the each method once for each element in the array. The element
is passed to the block as the value parameter. But there’s something subtle going on, too.
Take a look at the sum variable. It’s declared outside the block, updated inside the block, and
then passed to puts after the each method returns.

This illustrates an important rule: if there’s a variable inside a block with the same name as
a variable in the same scope outside the block, the two are the same —there’s only one variable
sum in the preceding program. (You can override this behavior, as we’ll see later.)

If, however, a variable appears only inside a block, then that variable is local to the block—
in the preceding program, we couldn’t have written the value of square at the end of the code,
because square is not defined at that point. It is defined only inside the block itself.

Although simple, this behavior can lead to unexpected problems. For example, say our
program was dealing with drawing different shapes. We might have this:

square = Shape.new(sides: 4) # assume Shape defined elsewhere
.. lots of code
sum = 0

[1, 2, 3, 4].each do |value]|
square = value * value
sum 4= square

end

puts sum
square.draw # BOOM!

This code would fail, because the variable square, which originally held a Shape object, will
have been overwritten inside the block and will hold a number by the time the each method
returns. This problem doesn't bite often, but when it does, it can be very confusing.

Fortunately, Ruby has a couple of answers.

First, parameters to a block are always local to a block, even if they have the same name as
locals in the surrounding scope. (You'll get a warning message if you run Ruby with the -w
option.)

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and lterators ® 54

value = "some shape"
[1, 2].each {|value| puts value }
puts value

produces:

1
2
some shape

Second, you can define block-local variables by putting them after a semicolon in the block’s
parameter list. So, in our sum-of-squares example, we should have indicated that the square
variable was block-local by writing it as follows:

square = "some shape"

sum = 0

[1, 2, 3, 4].each do |value; square|
square = value * value # this is a different variable
sum 4= square

end

puts sum

puts square

produces:

30
some shape

By making square block-local, values assigned inside the block will not affect the value of
the variable with the same name in the outer scope.

Implementing Iterators
A Ruby iterator is simply a method that can invoke a block of code.

We said that a block may appear only in the source adjacent to a method call and that the
code in the block is not executed at the time it is encountered. Instead, Ruby remembers the
context in which the block appears (the local variables, the current object, and so on) and
then enters the method. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using the
yield statement. Whenever a yield is executed, it invokes the code in the block. When the block
exits, control picks back up immediately after the yield.” Let’s start with a trivial example:

def two_ times
yield
yield
end
two_times { puts "Hello" }

produces:

Hello
Hello

3. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the
yield function in Liskov’s language CLU, a language that is more than thirty years old and yet contains
features that still haven’t been widely exploited by the CLU-less.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 55

The block (the code between the braces) is associated with the call to the two_times method.
Within this method, yield is called two times. Each time, it invokes the code in the block, and
a cheery greeting is printed. What makes blocks interesting, however, is that you can pass
parameters to them and receive values from them. For example, we could write a simple
function that returns members of the Fibonacci series up to a certain value:*

def fib_up_to(max)

i1, i2 =1, 1 # parallel assignment (il = 1 and i2 = 1)
while il <= max
yield il
il, i2 = i2, il+i2
end
end
fib_up to(1000) {|f| print f, " " }
puts
produces:

1123581321 34 55 89 144 233 377 610 987

In this example, the yield statement has a parameter. This value is passed to the associated
block. In the definition of the block, the argument list appears between vertical bars. In this
instance, the variable f receives the value passed to yield, so the block prints successive
members of the series. (This example also shows parallel assignment in action. We’ll come
back to this later on page 130.) Although it is common to pass just one value to a block, this
is not a requirement; a block may have any number of arguments.

Some iterators are common to many types of Ruby collections. Let’s look at three: each, collect,
and find.

each is probably the simplest iterator —all it does is yield successive elements of its collection:

[1, 3,5, 7,9 l.each {|i] puts i }

produces:

O N U W

The each iterator has a special place in Ruby; we’ll describe how it’s used as the basis of the
language’s for loop on page 140, and we’ll see on page 77 how defining an each method can
add a whole lot more functionality to the classes you write—for free.

A block may also return a value to the method. The value of the last expression evaluated
in the block is passed back to the method as the value of the yield. This is how the find method
used by class Array works.” Its implementation would look something like the following;

4. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent
term is the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in
analyzing natural phenomena.

5. The find method is actually defined in module Enumerable, which is mixed into class Array.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and lterators ® 56

class Array
def find
each do |value|
return value if yield(value)
end
nil
end
end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } # => 7

This uses each to pass successive elements of the array to the associated block. If the block
returns true (that is, a value other than nil or false), the method returns the corresponding
element. If no element matches, the method returns nil. The example shows the benefit of
this approach to iterators. The Array class does what it does best, accessing array elements,
and leaves the application code to concentrate on its particular requirement (in this case,
finding an entry that meets some criteria).

Another common iterator is collect (also known as map), which takes each element from the
collection and passes it to the block. The results returned by the block are used to construct
anew array. The following example uses the succ method, which increments a string value:

["H", A", "L"].collect {|x| x.succ } # => ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in the
Fibonacci example, an iterator can return derived values. This capability is used by Ruby’s
input and output classes, which implement an iterator interface that returns successive lines
(or bytes) in an I/O stream:

f = File.open("testfile")
f.each do |line]

puts "The line is: #{line}"
end
f.close
produces:
The line is: This is line one
The line is: This is line two

The line is: This is line three
The line is: And so on...

Sometimes you want to keep track of how many times you’ve been through the block. The
with_index method is your friend. It is added as an additional method call after an iterator,
and adds a sequence number to each value returned by that iterator. The original value and
that sequence number are then passed to the block:

f = File.open("testfile")

f.each.with_index do |line, index|
puts "Line #{index} is: #{line}"

end

f.close

produces:

Line 0 is: This is line one
Line 1 is: This is line two

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 57

Line 2 is: This is line three
Line 3 is: And so on...

Let’s look at one more useful iterator. The (somewhat obscurely named) inject method (defined
in the module Enumerable) lets you accumulate a value across the members of a collection.
For example, you can sum all the elements in an array and find their product using code
such as this:

[1,3,5,7].inject(0) {|sum, element| sum+element} # => 16
[1,3,5,7].inject(1) {|product, element| product*element} # => 105

inject works like this: the first time the associated block is called, sum is set to inject’s parameter,
and element is set to the first element in the collection. The second and subsequent times the
block is called, sum is set to the value returned by the block on the previous call. The final
value of inject is the value returned by the block the last time it was called. One more thing:
if inject is called with no parameter, it uses the first element of the collection as the initial
value and starts the iteration with the second value. This means that we could have written
the previous examples like this:

[1,3,5,7].inject {|sum, element| sum+element} # => 16
[1,3,5,7].inject {|product, element| product*element} # => 105

And, just to add to the mystique of inject, you can also give it the name of the method you
want to apply to successive elements of the collection. These examples work because, in
Ruby, addition and multiplication are simply methods on numbers, and :+ is the symbol
corresponding to the method +:

[1,3,5,7].inject(:+) # => 16
[1,3,5,7].inject(:*) # => 105

Enumerators—External Iterators

Let’s spend a paragraph comparing Ruby’s approach to iterators to that of languages such
as C++and Java. In Ruby, the basic iterator is internal to the collection —it’s simply a method,
identical to any other, that happens to call yield whenever it generates a new value. The thing
that uses the iterator is just a block of code associated with a call to this method.

In other languages, collections don’t contain their own iterators. Instead, they implement
methods that generate external helper objects (for example, those based on Java’s Iterator
interface) that carry the iterator state. In this, as in many other ways, Ruby is a transparent
language. When you write a Ruby program, you concentrate on getting the job done, not on
building scaffolding to support the language itself.

It’s also worth spending another paragraph looking at why Ruby’s internal iterators aren’t
always the best solution. One area where they fall down badly is where you need to treat
an iterator as an object in its own right (for example, passing the iterator into a method that
needs to access each of the values returned by that iterator). It’s also difficult to iterate over
two collections in parallel using Ruby’s internal iterator scheme.

Fortunately, Ruby comes with a built-in Enumerator class, which implements external iterators
in Ruby for just such occasions.

You can create an Enumerator object by calling the to_enum method (or its synonym, enum_for)
on a collection such as an array or a hash:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and Iterators ® 58

[1, 3, "cat"]
h = { dog: "canine", fox: "vulpine" }

Create Enumerators
enum_a = a.to _enum
enum_h = h.to _enum

enum_a.next # => 1
enum_h.next # => [:dog, "canine"]
enum_a.next # => 3
enum_h.next # => [:fox, "vulpine"]

Most of the internal iterator methods—the ones that normally yield successive values to a
block—will also return an Enumerator object if called without a block:

a=1[1, 3, "cat"]
enum_a = a.each # create an Enumerator using an internal iterator

enum_a.next # => 1
enum_a.next # => 3

Ruby has a method called loop that does nothing but repeatedly invoke its block. Typically,
your code in the block will break out of the loop when some condition occurs. But loop is
also smart when you use an Enumerator —when an enumerator object runs out of values inside
aloop, the loop will terminate cleanly. The following example shows this in action—the loop
ends when the three-element enumerator runs out of values.’

short enum = [1, 2, 3].to enum
long _enum = ('a'..'z').to_enum

loop do
puts "#{short enum.next} - #{long enum.next}"
end
produces:
1-a
2 -b
3-c¢

Enumerators Are Objects

Enumerators take something that’s normally executable code (the act of iterating) and turn
it into an object. This means you can do things programmatically with enumerators that
aren’t easily done with regular loops.

For example, the Enumerable module defines each_with_index. This invokes its host class’s each
Method, returning successive values along with an index:

result = []
['a', 'b', 'c' l.each with index {|item, index| result << [item, index] }
result #=>[["a", 0], ["b", 1], ["c", 2]]

6. You can also handle this in your own iterator methods by rescuing the Stoplteration exception, but because
we haven't talked about exceptions yet, we won't go into details here.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 59

But what if you wanted to iterate and receive an index but use a different method than each
to control that iteration? For example, you might want to iterate over the characters in a
string. There’s no method called each_char_with_index built into the String class.

Enumerators to the rescue. The each_char method of strings will return an enumerator if you
don’t give it a block, and you can then call each_with_index on that enumerator:

result = []
"cat".each_char.each_with_index {|item, index| result << [item, index] }
result #=>[["c", 0], ["a", 1], ["t", 2]]

In fact, this is such a common use of enumerators that Matz has given us with_index, which
makes the code read better:

result = []
"cat".each_char.with_index {|item, index| result << [item, index] }
result #=>[["c", 0], ["a", 1], ["t", 2]]

You can also create the Enumerator object explicitly —in this case we’ll create one that calls
our string’s each_char method. We can call to_a on that enumerator to iterate over it:

enum = "cat".enum for(:each char)
enum.to a # = ["c", "a", "t"]

If the method we're using as the basis of our enumerator takes parameters, we can pass them
to enum_for:

enum_in_threes = (1..10).enum_for(:each_slice, 3)
enum_in_threes.to_a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

Enumerators Are Generators and Filters

(This is more advanced material that can be skipped on first reading.) As well as creating enumer-
ators from existing collections, you can create an explicit enumerator, passing it a block. The
code in the block will be used when the enumerator object needs to supply a fresh value to
your program. However, the block isn’t simply executed from top to bottom. Instead, the
block is executed in parallel with the rest of your program’s code. Execution starts at the top
and pauses when the block yields a value to your code. When the code needs the next value,
execution resumes at the statement following the yield. This lets you write enumerators that
generate infinite sequences (among other things):

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count += 1
yielder.yield number
end
end

5.times { print triangular_numbers.next, " " }
puts

produces:

1361015

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

*Newin 2.0¢

Chapter 4. Containers, Blocks, and lterators ® 60

Enumerator objects are also enumerable (that is to say, the methods available to enumerable
objects are also available to them). That means we can use Enumerable’s methods (such as
first) on them:

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count +=1
yielder.yield number
end
end

p triangular_numbers.first(5)

produces:

[1, 3, 6, 10, 15]

You have to be slightly careful with enumerators that can generate infinite sequences. Some
of the regular Enumerator methods such as count and select will happily try to read the whole
enumeration before returning a result. If you want a version of select that works with infinite
sequences, in Ruby 1.9 you'll need to write it yourself. (Ruby 2 users have a better option,
which we discuss in a minute.) Here’s a version that gets passed an enumerator and a block
and returns a new enumerator containing values from the original for which the block returns
true. We'll use it to return triangular numbers that are multiples of 10.

triangular_numbers = Enumerator.new do |yielder|
C
as before. ..
#

end

def infinite select(enum, &block)
Enumerator.new do |yielder|
enum.each do |value]
yielder.yield(value) if block.call(value)
end
end
end

p infinite select(triangular_numbers) {|val| val % 10 == 0}.first(5)

produces:

[10, 120, 190, 210, 300]
Here we use the &block notation to pass the block as a parameter to the infinite_select method.

As Brian Candler pointed out in the ruby-core mailing list (message 19679), you can make
this more convenient by adding filters such as infinite_select directly to the Enumerator class.
Here’s an example that returns the first five triangular numbers that are multiples of 10 and
that have the digit 3 in them:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 61

triangular numbers = Enumerator.new do |yielder|
... as before
end

class Enumerator
def infinite select(&block)
Enumerator.new do |yielder|
self.each do |value]
yielder.yield(value) if block.call(value)
end
end
end
end

p triangular numbers

.infinite select {|val| val % 10 == 0}
.infinite select {|val| val.to s =~ /3/ }
.first(5)

produces:

[300, 630, 1830, 3160, 3240]

Lazy Enumerators in Ruby 2

As we saw in the previous section, the problem with enumerators that generate infinite
sequences is that we have to write special, non-greedy, versions of methods such as select.
Fortunately, if you're using Ruby 2.0, you have this support built in.

If you call Enumerator#lazy on any Ruby enumerator, you get back an instance of class Enumer-
ator::Lazy. This enumerator acts just like the original, but it reimplements methods such as
select and map so that they can work with infinite sequences. Putting it another way, none
of the lazy versions of the methods actually consume any data from the collection until that
data is requested, and then they only consume enough to satisfy that request.

To work this magic, the lazy versions of the various methods do not return arrays of data.
Instead, each returns a new enumerator that includes its own special processing—the select
method returns an enumerator that knows how to apply the select logic to its input collection,
the map enumerator knows how to handle the map logic, and so on. The result is that if you
chain a bunch of lazy enumerator methods, what you end up with is a chain of enumera-
tors—the last one in the chain takes values from the one before it, and so on.

Let’s play with this a little. To start, let’s add a helper method to the Integer class that generates
a stream of integers.

def Integer.all
Enumerator.new do |yielder, n: 0]
loop { yielder.yield(n += 1) }
end.lazy
end

p Integer.all.first(10)

produces:

[1, 2, 3, 4, 5,6, 7,8, 9, 10]

*Newin2.0¢

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and Iterators ® 62

There are a couple of things to note here. First, see how I used a keyword parameter on the
block both to declare and initialize a local variable n.” Second, see how we convert the basic
generator into a lazy enumerator with the call to lazy after the end of the block.

Calling the first method on this returns the numbers 1 through 10, but this doesn’t exercise
the method’s lazy characteristics. Let’s instead get the first 10 multiples of three.

p Integer
.all
.select {|i| (i % 3).zero? }
.first(10)

produces:

[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Without the lazy enumerator, the call to select would effectively never return, as select would
try to read all the values from the generator. But the lazy version of select only consumes
values on demand, and in this case the subsequent call to first only asks for 10 values.

Let’s make this a little more complex—how about multiples of 3 whose string representations
are palindromes?

def palindrome?(n)

n=n.to_s
n == n.reverse
end
p Integer
.all

.select { |i] (i % 3).zero? }
.select { |i| palindrome?(i) }
.first(10)

produces:

[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

Remember that our lazy filter methods simply return new Enumerator objects? That means
we can split up the previous code:

multiple of three = Integer
.all
.select { |i| (i % 3).zero? }

p multiple of three.first(10)

m3_palindrome = multiple of three
.select { |i| palindrome?(i) }

p m3 palindrome.first(10)

produces:

[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

7. It would be nice to be able to define a true block-local variable using the semicolon separator, but Ruby
doesn’t allow these variables to have initializers.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 63

You could also code up the various predicates as free-standing procs, if you feel it aids
readability or reusablility.

->n { (n % 3).zero? }
->n {n=n.tos; n==n.reverse }

multiple of three
palindrome

p Integer
.all
.select(&multiple of three)
.select(&palindrome)
.first(10)

produces:

[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

If you've ever played with ActiveRelation in Rails, you’ll be familiar with this pattern—lazy
enumeration methods let us build up a complex filter one piece at a time.

Blocks for Transactions

Although blocks are often used as the target of an iterator, they have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run under some kind of transac-
tional control. For example, you'll often open a file, do something with its contents, and then
ensure that the file is closed when you finish. Although you can do this using conventional
linear code, a version using blocks is simpler (and turns out to be less error prone). A naive
implementation (ignoring error handling) could look something like the following:

class File
def self.open _and process(*args)
f = File.open(*args)
yield f
f.close()
end
end

File.open and process("testfile", "r") do |file|
while line = file.gets
puts line
end
end

produces:

This is line one
This is line two
This is line three
And so on...

open_and_process is a class method —it may be called independently of any particular file object.
We want it to take the same arguments as the conventional File.open method, but we don't
really care what those arguments are. To do this, we specified the arguments as *args,
meaning “collect the actual parameters passed to the method into an array named args.” We
then call File.open, passing it *args as a parameter. This expands the array back into individual

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and lterators ® 64

parameters. The net result is that open_and_process transparently passes whatever parameters
it receives to File.open.

Once the file has been opened, open_and_process calls yield, passing the open file object to the
block. When the block returns, the file is closed. In this way, the responsibility for closing
an open file has been shifted from the users of file objects to the file objects themselves.

The technique of having files manage their own life cycle is so useful that the class File supplied
with Ruby supports it directly. If File.open has an associated block, then that block will be
invoked with a file object, and the file will be closed when the block terminates. This is
interesting, because it means that File.open has two different behaviors. When called with a
block, it executes the block and closes the file. When called without a block, it returns the
file object. This is made possible by the method block_given?, which returns true if a block is
associated with the current method. Using this method, you could implement something
similar to the standard File.open (again, ignoring error handling) using the following:

class File
def self.my open(*args)
result = file = File.new(*args)
If there's a block, pass in the file and close the file when it returns
if block_given?
result = yield file
file.close
end
result
end
end

This has one last twist: in the previous examples of using blocks to control resources, we
didn’t address error handling. If we wanted to implement these methods properly, we'd
need to ensure that we closed a file even if the code processing that file somehow aborted.
We do this using exception handling, which we talk about later on page 145.

Blocks Can Be Objects

Blocks are like anonymous methods, but there’s more to them than that. You can also convert
a block into an object, store it in variables, pass it around, and then invoke its code later.

Remember we said that you can think of blocks as being like an implicit parameter that’s
passed to a method? Well, you can also make that parameter explicit. If the last parameter
in a method definition is prefixed with an ampersand (such as &action), Ruby looks for a code
block whenever that method is called. That code block is converted to an object of class Proc
and assigned to the parameter. You can then treat the parameter as any other variable.

Here’s an example where we create a Proc object in one instance method and store it in an
instance variable. We then invoke the proc from a second instance method.

class ProcExample
def pass in block(&action)
@stored proc = action
end
def use proc(parameter)
@stored proc.call(parameter)
end
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 65

eg = ProcExample.new

eg.pass_in block { |param| puts "The parameter is #{param}" }
eg.use proc(99)

produces:

The parameter is 99

See how the call method on a proc object invokes the code in the original block?

Many Ruby programs store and later call blocks in this way —it’s a great way of implementing
callbacks, dispatch tables, and so on. But you can go one step further. If a block can be turned
into an object by adding an ampersand parameter to a method, what happens if that method
then returns the Proc object to the caller?

def create block object(&block)
block
end

bo = create block object { |param| puts "You called me with #{param}" }

bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

In fact, this is so useful that Ruby provides not one but two built-in methods that convert a
block to an object.’ Both lambda and Proc.new take a block and return an object of class Proc.
The objects they return differ slightly in how they behave, but we’ll hold off talking about

that until later on page 336.

bo = lambda { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

Blocks Can Be Closures

Remember I said that a block can use local variables from the surrounding scope? So, let’s
look at a slightly different example of a block doing just that:

def n_times(thing)
lambda {|n| thing * n }
end

pl = n_times(23)

pl.call(3) # => 69

pl.call(4) # => 92

p2 = n_times("Hello ")

p2.call(3) # => "Hello Hello Hello "

8. There’s actually a third, proc, but it is effectively deprecated.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 4. Containers, Blocks, and lterators ® 66

The method n_times returns a Proc object that references the method’s parameter, thing. Even
though that parameter is out of scope by the time the block is called, the parameter remains
accessible to the block. This is called a closure—variables in the surrounding scope that are
referenced in a block remain accessible for the life of that block and the life of any Proc object
created from that block.

Here’s another example —a method that returns a Proc object that returns successive powers
of 2 when called:

def power proc_generator
value = 1
lambda { value += value }
end

power proc = power proc_generator

puts power proc.call
puts power proc.call
puts power proc.call
produces:

2
4
8

An Alternative Notation
Ruby has another way of creating Proc objects. Rather than write this:

lambda { |params| ... }

you can now write the following:”

-> params { ... }

The parameters can be enclosed in optional parentheses. Here’s an example:

procl = -> arg { puts "In procl with #{arg}" }
proc2 = -> argl, arg2 { puts "In proc2 with #{argl} and #{arg2}" }
proc3 = ->(argl, arg2) { puts "In proc3 with #{argl} and #{arg2}" }

procl.call "ant"
proc2.call "bee", "cat"
proc3.call "dog", "elk"

produces:

In procl with ant
In proc2 with bee and cat
In proc3 with dog and elk

The -> form is more compact than using lambda and seems to be in favor when you want to
pass one or more Proc objects to a method:

9. Let’s start by getting something out of the way. Why ->? For compatibility across all the different source
file encodings, Matz is restricted to using pure 7-bit ASCII for Ruby operators, and the choice of available
characters is severely limited by the ambiguities inherent in the Ruby syntax. He felt that -> was (kind
of) reminiscent of a Greek lambda character A.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Iterators ® 67

def my if(condition, then clause, else clause)
if condition
then clause.call
else
else clause.call
end
end

5.times do |val]
my if val < 2,
-> { puts "#{val} is small" },
-> { puts "#{val} is big" }
end

produces:

is small
is small
big
is big
is big

A WNRFEOO
-
n

One good reason to pass blocks to methods is that you can reevaluate the code in those
blocks at any time. Here’s a trivial example of reimplementing a while loop using a method.
Because the condition is passed as a block, it can be evaluated each time around the loop:

def my while(cond, &body)
while cond.call
body.call
end
end

my while -> { a < 3 } do

puts a
a+=1
end
produces:
0
1
2

Block Parameter Lists

Blocks written using the old syntax take their parameter lists between vertical bars. Blocks

written using the -> syntax take a separate parameter list before the block body. In both

cases, the parameter list looks just like the list you can give to methods. It can take default

values, splat args (described later on page 120), keyword args, and a block parameter (a

trailing argument starting with an ampersand). You can write blocks that are just as versatile ~ tNewin2.0:
as methods."” Here’s a block using the original block notation:

10. Actually, they are more versatile, because these blocks are also closures, while methods are not.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

4.4

Chapter 4. Containers, Blocks, and Iterators ® 68

procl = lambda do |a, *b, &block]|
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

procl.call(l, 2, 3, 4) { puts "in blockl" }

produces:

a=1

b =12, 3, 4]
in blockl

And here’s one using the new -> notation:

proc2 = -> a, *b, &block do
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

proc2.call(l, 2, 3, 4) { puts "in block2" }

produces:

a=1

b =12, 3, 4]
in block2

Containers Everywhere

Containers, blocks, and iterators are core concepts in Ruby. The more you write in Ruby,
the more you'll find yourself moving away from conventional looping constructs. Instead,
you'll write classes that support iteration over their contents. And you’ll find that this code
is compact, easy to read, and a joy to maintain. If this all seems too weird, don’t worry. After
a while, it'll start to come naturally. And you’ll have plenty of time to practice as you use
Ruby libraries and frameworks.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

5.1

CHAPTER 5

Sharing Functionality: Inheritance,
Modules, and Mixins

One of the accepted principles of good design is the elimination of unnecessary duplication.
We work hard to make sure that each concept in our application is expressed just once in
our code.’

We've already seen how classes help. All the methods in a class are automatically accessible
to instances of that class. But there are other, more general types of sharing that we want to
do. Maybe we're dealing with an application that ships goods. Many forms of shipping are
available, but all forms share some basic functionality (weight calculation, perhaps). We
don’t want to duplicate the code that implements this functionality across the implementation
of each shipping type. Or maybe we have a more generic capability that we want to inject
into a number of different classes. For example, an online store may need the ability to cal-
culate sales tax for carts, orders, quotes, and so on. Again, we don’t want to duplicate the
sales tax code in each of these places.

In this chapter, we’ll look at two different (but related) mechanisms for this kind of sharing
in Ruby. The first, class-level inheritance, is common in object-oriented languages. We’ll then
look at mixins, a technique that is often preferable to inheritance. We’ll wind up with a dis-
cussion of when to use each.

Inheritance and Messages

In the previous chapter, we saw that when puts needs to convert an object to a string, it calls
that object’s to_s method. But we’'ve also written our own classes that don't explicitly
implement to_s. Despite this, objects of these classes respond successfully when we call to_s
on them. How this works has to do with inheritance, subclassing, and how Ruby determines
what method to run when you send a message to an object.

Inheritance allows you to create a class that is a refinement or specialization of another class.
This class is called a subclass of the original, and the original is a superclass of the subclass.
People also talk of child and parent classes.

1. Why? Because the world changes. And when you adapt your application to each change, you want to

know that you've changed exactly the code you need to change. If each real-world concept is imple-
mented at a single point in the code, this becomes vastly easier.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins ® 70

The basic mechanism of subclassing is simple. The child inherits all of the capabilities of its
parent class—all the parent’s instance methods are available in instances of the child.

Let’s look at a trivial example and then later build on it. Here’s a definition of a parent class
and a child class that inherits from it:

class Parent
def say hello
puts "Hello from #{self}"
end
end

p = Parent.new
p.say hello

Subclass the parent...
class Child < Parent
end

¢ = Child.new
c.say hello

produces:

Hello from #<Parent:0x007fb87110fd98>
Hello from #<Child:0x007fb87110fac8>

The parent class defines a single instance method, say_hello. We call it by creating a new
instance of the class and store a reference to that instance in the variable p.

We then create a subclass using class Child < Parent. The < notation means we're creating a
subclass of the thing on the right; the fact that we use less-than presumably signals that the
child class is supposed to be a specialization of the parent.

Note that the child class defines no methods, but when we create an instance of it, we can
call say_hello. That’s because the child inherits all the methods of its parent. Note also that
when we output the value of self—the current object—it shows that we're in an instance of
class Child, even though the method we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

class Parent

end

class Child < Parent

end

Child.superclass # => Parent

But what's the superclass of Parent?

class Parent
end
Parent.superclass # => Object

If you don’t define an explicit superclass when defining a class, Ruby automatically makes
the built-in class Object that class’s parent. Let’s go further:

Object.superclass # => BasicObject

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Inheritance and Messages ® 71

Class BasicObject is used in certain kinds of metaprogramming, acting as a blank canvas.
What's its parent?

BasicObject.superclass.inspect # => "nil"

So, we’ve finally reached the end. BasicObject is the root class of our hierarchy of classes.
Given any class in any Ruby application, you can ask for its superclass, then the superclass
of that class, and so on, and you'll eventually get back to BasicObject.

We've seen that if you call a method in an instance of class Child and that method isn’t in
Child’s class definition, Ruby will look in the parent class. It goes deeper than that, because
if the method isn’t defined in the parent class, Ruby continues looking in the parent’s parent,
the parent’s parent’s parent, and so on, through the ancestors until it runs out of classes.

And this explains our original question. We can work out why to_s is available in just about
every Ruby object. to_s is actually defined in class Object. Because Object is an ancestor of
every Ruby class (except BasicObject), instances of every Ruby class have a to_s method defined:

class Person
def initialize(name)
@name = name
end
end
p = Person.new("Michael")
puts p
produces:

#<Person:0x007fa08b8643f8>

We saw in the previous chapter that we can override the to_s method:

class Person
def initialize(name)
@name = name
end
def to s
"Person named #{@name}"
end
end

p = Person.new("Michael")
puts p
produces:

Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing special about this
code. The puts method calls to_s on its arguments. In this case, the argument is a Person object.
Because class Person defines a to_s method, that method is called. If it hadn’t defined a to_s
method, then Ruby looks for (and finds) to_s in Person’s parent class, Object.

It is common to use subclassing to add application-specific behavior to a standard library
or framework class. If you've used Ruby on Rails,” you’ll have subclassed ActionController
when writing your own controller classes. Your controllers get all the behavior of the base

2. http://www.rubyonrails.com

http://www.rubyonrails.com
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins ® 72

controller and add their own specific handlers to individual user actions. If you've used the
FXRuby GUI framework,” you’ll have used subclassing to add your own application-specific
behavior to FX’s standard GUI widgets.

Here’s a more self-contained example. Ruby comes with a library called GServer that
implements basic TCP server functionality. You add your own behavior to it by subclassing
the GServer class. Let’s use that to write some code that waits for a client to connect on a
socket and then returns the last few lines of the system log file. This is an example of some-
thing that’s actually quite useful in long-running applications—by building in such a server,
you can access the internal state of the application while it is running (possibly even
remotely).

The GServer class handles all the mechanics of interfacing to TCP sockets. When you create
a GServer object, you tell it the port to listen on.” Then, when a client connects, the GServer
object calls its serve method to handle that connection. Here’s the implementation of that
serve method in the GServer class:

def serve(io)
end

As you can see, it does nothing. That’s where our own LogServer class comes in:

tut_modules/gserver-logger.rb
require 'gserver'

class LogServer < GServer

def initialize
super(12345)
end

def serve(client)
client.puts get end of log file
end

private
def get end of log file

File.open("/var/log/system.log") do |log]|
log.seek(-500, IO0::SEEK END) # back up 500 characters from end

log.gets # ignore partial line
log. read # and return rest
end
end
end

server = LogServer.new
server.start.join

I'don’t want to focus too much on the details of running the server. Instead, let’s look at how
inheritance has helped us with this code. Notice that our LogServer class inherits from GServer.

3. http://www.fxruby.org/
4. You can tell it a lot more, as well. We chose to keep it simple here.

http://media.pragprog.com/titles/ruby4/code/tut_modules/gserver-logger.rb
http://www.fxruby.org/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

5.2

Modules ® 73

This means that a log server is a kind of GServer, sharing all the GServer functionality. It also
means we can add our own specialized behavior.

The first such specialization is the initialize method. We want our log server to run on TCP
port 12345. That’s a parameter that would normally be passed to the GServer constructor. So,
within the initialize method of the LogServer, we want to invoke the initialize method of GServer,
our parent, passing it the port number. We do that using the Ruby keyword super. When
you invoke super, Ruby sends a message to the parent of the current object, asking it to invoke
a method of the same name as the method invoking super. It passes this method the param-
eters that were passed to super.

This is a crucial step and one often forgotten by folks new to OO. When you subclass
another class, you are responsible for making sure the initialization required by that class
gets run. This means that, unless you know it isn’t needed, you’ll need to put a call to super
somewhere in your subclass’s initialize method. (If your subclass doesn’t need an initialize
method, then there’s no need to do anything, because it will be the parent class’s initialize
method that gets run when your objects get created.)

So, by the time our initialize method finishes, our LogServer object will be a fully fledged TCP
server, all without us having to write any protocol-level code. Down at the end of our pro-
gram, we start the server and then call join to wait for the server to exit.

Our server receives connections from external clients. These invoke the serve method in the
server object. Remember that empty method in class GServer? Well, our LogServer class provides
its own implementation. And because it gets found by Ruby first when it’s looking for
methods to execute, it’s our code that gets run whenever GServer accepts a connection. And
our code reads the last few lines of the log file and returns them to the client:’

$ telnet 127.0.0.1 12345

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

Jul 9 12:22:59 doc-72-47-70-67 com.apple.mdworker.pool.0[49913]: PSSniffer error
Jul 9 12:28:55 doc-72-47-70-67 login[82588]: DEAD PROCESS: 82588 ttys004
Connection closed by foreign host.

The use of the serve method shows a common idiom when using subclassing. A parent class
assumes that it will be subclassed and calls a method that it expects its children to implement.
This allows the parent to take on the brunt of the processing but to invoke what are effectively
hook methods in subclasses to add application-level functionality. As we’ll see at the end
of this chapter, just because this idiom is common doesn’t make it good design.

So, instead, let’s look at mixins, a different way of sharing functionality in Ruby code. But,
before we look at mixins, we’ll need to get familiar with Ruby modules.

Modules

Modules are a way of grouping together methods, classes, and constants. Modules give you
two major benefits:

* Modules provide a namespace and prevent name clashes.
® Modules support the mixin facility.

5. You can also access this server from a web browser by connecting to http://127.0.0.1:12345.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins ® 74

Namespaces

As you start to write bigger Ruby programs, you'll find yourself producing chunks of reusable
code—libraries of related routines that are generally applicable. You'll want to break this
code into separate files so the contents can be shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set of
interrelated classes) into a file. However, there are times when you want to group things
together that don’t naturally form a class.

An initial approach may be to put all these things into a file and simply load that file into
any program that needs it. This is the way the C language works. However, this approach
has a problem. Say you write a set of the trigonometry functions, sin, cos, and so on. You
stuff them all into a file, trig.rb, for future generations to enjoy. Meanwhile, Sally is working
on a simulation of good and evil, and she codes a set of her own useful routines, including
be_good and sin, and sticks them into moral.rb. Joe, who wants to write a program to find out
how many angels can dance on the head of a pin, needs to load both trig.rb and moral.rb into
his program. But both define a method called sin. Bad news.

The answer is the module mechanism. Modules define a namespace, a sandbox in which your
methods and constants can play without having to worry about being stepped on by other
methods and constants. The trig functions can go into one module:

tut_modules/trig.rb
module Trig
PI = 3.141592654
def Trig.sin(x)
..
end

def Trig.cos(x)
..
end
end

and the good and bad “moral” methods can go into another:

tut_modules/moral.rb
module Moral

VERY BAD = 0
BAD =1
def Moral.sin(badness)
...
end
end

Module constants are named just like class constants, with an initial uppercase letter.® The
method definitions look similar, too: module methods are defined just like class methods.

If a third program wants to use these modules, it can simply load the two files (using the
Ruby require statement). To reference the name sin unambiguously, our code can then qualify
the name using the name of the module containing the implementation we want, followed
by ::, the scope resolution operator:

6. But we will conventionally use all uppercase letters when writing them.

http://media.pragprog.com/titles/ruby4/code/tut_modules/trig.rb
http://media.pragprog.com/titles/ruby4/code/tut_modules/moral.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

53

Mixins ® 75

tut_modules/pin_head.rb

require relative 'trig'

require relative 'moral'’

y = Trig.sin(Trig::PI/4)

wrongdoing = Moral.sin(Moral::VERY BAD)

As with class methods, you call a module method by preceding its name with the module’s
name and a period, and you reference a constant using the module name and two colons.

Mixins
Modules have another, wonderful use. At a stroke, they pretty much eliminate the need for
inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed by the module name. If this made you think of class methods, your next
thought may well be “What happens if I define instance methods within a module?” Good
question. A module can’t have instances, because a module isn't a class. However, you can
include a module within a class definition. When this happens, all the module’s instance
methods are suddenly available as methods in the class as well. They get mixed in. In fact,
mixed-in modules effectively behave as superclasses.

module Debug
def who am i?
"#{self.class.name} (id: #{self.object id}): #{self.name}"
end
end

class Phonograph
include Debug
attr_reader :name
def initialize(name)

@name = name

end
...

end

class EightTrack
include Debug
attr_reader :name
def initialize(name)

@name = name

end
...

end

ph
et

Phonograph.new("West End Blues")
EightTrack.new("Surrealistic Pillow")

ph.who _am i? # => "Phonograph (id: 70266478767560): West End Blues"
et.who _am i? # => "EightTrack (id: 70266478767520): Surrealistic Pillow"

By including the Debug module, both the Phonograph and EightTrack classes gain access to the
who_am_i? instance method.

http://media.pragprog.com/titles/ruby4/code/tut_modules/pin_head.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins ® 76

We’ll make a couple of points about the include statement before we go on.

First, it has nothing to do with files. C programmers use a preprocessor directive called
#include to insert the contents of one file into another during compilation. The Ruby include
statement simply makes a reference to a module. If that module is in a separate file, you
must use require (or its less commonly used cousin, load) to drag that file in before using
include. Second, a Ruby include does not simply copy the module’s instance methods into the
class. Instead, it makes a reference from the class to the included module. If multiple classes
include that module, they’ll all point to the same thing. If you change the definition of a
method within a module, even while your program is running, all classes that include that
module will exhibit the new behavior.”

Mixins give you a wonderfully controlled way of adding functionality to classes. However,
their true power comes out when the code in the mixin starts to interact with code in the
class that uses it. Let’s take the standard Ruby mixin Comparable as an example. The Comparable
mixin adds the comparison operators (<, <=, ==, >=, and >), as well as the method between?,
to a class. For this to work, Comparable assumes that any class that uses it defines the operator
<=>. S0, as a class writer, you define one method, <=>; include Comparable; and get six
comparison functions for free.

Let’s try this with a simple Person class. We’ll make people comparable based on their names:

class Person
include Comparable
attr _reader :name

def initialize(name)

@name = name
end
def to s

"#{@name}"

end
def <=>(other)

self.name <=> other.name

end
end
pl = Person.new("Matz")
p2 = Person.new("Guido")
p3 = Person.new("Larry")

Compare a couple of names
if pl > p2

puts "#{pl.name}'s name > #{p2.name}'s name"
end

Sort an array of Person objects

puts "Sorted list:"
puts [pl, p2, p3].sort

7. Of course, we're speaking only of methods here. Instance variables are always per object, for example.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

5.4

5.5

Iterators and the Enumerable Module ¢ 77

produces:

Matz's name > Guido's name
Sorted list:

Guido

Larry

Matz

We included Comparable in our Person class and then defined a <=> method. We were then
able to perform comparisons (such as pl > p2) and even sort an array of Person objects.

Some object-oriented languages (such as C++) support multiple inheritance, where a class can have
more than one immediate parent, inheriting functionality from each. Although powerful, this technique
can be dangerous, because the inheritance hierarchy can become ambiguous.

Other languages, such as Java and C#, support single inheritance. Here, a class can have only one
immediate parent. Although cleaner (and easier to implement), single inheritance also has drawbacks
—in the real world, objects often inherit attributes from multiple sources (a ball is both a bouncing
thing and a spherical thing, for example). Ruby offers an interesting and powerful compromise, giving
you the simplicity of single inheritance and the power of multiple inheritance. A Ruby class has only
one direct parent, so Ruby is a single-inheritance language. However, Ruby classes can include the
functionality of any number of mixins (a mixin is like a partial class definition). This provides a con-
trolled multiple-inheritance-like capability with none of the drawbacks.

Iterators and the Enumerable Module

The Ruby collection classes (Array, Hash, and so on) support a large number of operations
that do various things with the collection: traverse it, sort it, and so on. You may be thinking,
“Gee, it'd sure be nice if my class could support all these neat-o features, too!” (If you actu-
ally thought that, it'’s probably time to stop watching reruns of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins and
module Enumerable. All you have to do is write an iterator called each, which returns the
elements of your collection in turn. Mix in Enumerable, and suddenly your class supports
things such as map, include?, and find_all?. If the objects in your collection implement meaningful
ordering semantics using the <=> method, you'll also get methods such as min, max, and sort.

Composing Modules

Enumerable is a standard mixin, implementing a bunch of methods in terms of the host class’s
each method. One of the methods defined by Enumerable is inject, which we saw Ereviouslz
on page 57. This method applies a function or operation to the first two elements in the
collection and then applies the operation to the result of this computation and to the third
element, and so on, until all elements in the collection have been used.

Because inject is made available by Enumerable, we can use it in any class that includes the
Enumerable module and defines the method each. Many built-in classes do this.

[1, 2, 3, 4, 5].inject(:+) # => 15
('a'..'m").inject(:+) # => "abcdefghijklm"

We could also define our own class that mixes in Enumerable and hence gets inject support:

report erratum « discuss

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins ® 78

tut_modules/vowel_finder.rb
class VowelFinder
include Enumerable

def initialize(string)
@string = string
end
def each
@string.scan(/[aeiou]/) do |vowel]
yield vowel
end
end
end

vf = VowelFinder.new("the quick brown fox jumped")
vf.inject(:+) # => "euiooue"

Note we used the same pattern in the call to inject in these examples—we're using it to perform
a summation. When applied to numbers, it returns the arithmetic sum; when applied to
strings, it concatenates them. We can use a module to encapsulate this functionality too:

module Summable
def sum
inject(:+)
end
end

class Array
include Summable
end

class Range
include Summable
end

require relative "vowel finder"
class VowelFinder

include Summable
end

[1,2,3,4,5].sum # => 15
('a'..'m").sum # => "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")
vf.sum # => "euiooue"

Instance Variables in Mixins

People coming to Ruby from C++ often ask, “What happens to instance variables in a mixin?
In C++, Thave to jump through some hoops to control how variables are shared in a multiple-
inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question. Remember how instance variables work in
Ruby: the first mention of an @-prefixed variable creates the instance variable in the current
object, self.

http://media.pragprog.com/titles/ruby4/code/tut_modules/vowel_finder.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Composing Modules ® 79

For a mixin, this means the module you mix into your client class (the mixee?) may create
instance variables in the client object and may use attr_reader and friends to define accessors
for these instance variables. For instance, the Observable module in the following example
adds an instance variable @observer_list to any class that includes it:

tut_modules/observer_impl.rb
module Observable
def observers
@observer list ||= []
end
def add observer(obj)
observers << obj
end
def notify observers
observers.each {|o| o.update }
end
end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash with
those of the host class or with those of other mixins. The example that follows shows a class
that uses our Observer module but that unluckily also uses an instance variable called
@observer_list. At runtime, this program will go wrong in some hard-to-diagnose ways:

tut_modules/observer_impl_eg.rb
require relative 'observer impl'

class TelescopeScheduler

other classes can register to get notifications
when the schedule changes
include Observable

def initialize
@observer list = [] # folks with telescope time
end
def add viewer(viewer)
@observer_list << viewer
end

...
end

For the most part, mixin modules don’t use instance variables directly —they use accessors
to retrieve data from the client object. But if you need to create a mixin that has to have its
own state, ensure that the instance variables have unique names to distinguish them from
any other mixins in the system (perhaps by using the module’s name as part of the variable
name). Alternatively, the module could use a module-level hash, indexed by the current
object ID, to store instance-specific data without using Ruby instance variables:

module Test
State = {}
def state=(value)
State[object id] = value
end

http://media.pragprog.com/titles/ruby4/code/tut_modules/observer_impl.rb
http://media.pragprog.com/titles/ruby4/code/tut_modules/observer_impl_eg.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

5.6

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins ® 80

def state
State[object id]
end
end

class Client
include Test
end

cl = Client.new
c2 = Client.new
cl.state = 'cat'
c2.state = 'dog'
cl.state # => "cat"
c2.state # => "dog"

A downside of this approach is that the data associated with a particular object will not get
automatically deleted if the object is deleted. In general, a mixin that requires its own state
is not a mixin—it should be written as a class.

Resolving Ambiguous Method Names

One of the other questions folks ask about mixins is, how is method lookup handled? In
particular, what happens if methods with the same name are defined in a class, in that class’s
parent class, and in a mixin included into the class?

The answer is that Ruby looks first in the immediate class of an object, then in the mixins
included into that class, and then in superclasses and their mixins. If a class has multiple
modules mixed in, the last one included is searched first.

Inheritance, Mixins, and Design

Inheritance and mixins both allow you to write code in one place and effectively inject that
code into multiple classes. So, when do you use each?

As with most questions of design, the answer is, well...it depends. However, over the years
developers have come up with some pretty clear general guidelines to help us decide.

First let’s look at subclassing. Classes in Ruby are related to the idea of types. It would be
natural to say that "cat" is a string and [1,2] is an array. And that’s another way of saying that
the class of "cat" is String and the class of [1,2] is Array. When we create our own classes, you
can think of it as adding new types to the language. And when we subclass either a built-in
class or our own class, we're creating a subtype.

Now, a lot of research has been done on type theories. One of the more famous results is the
Liskov Substitution Principle. Formally, this states, “Let q(x) be a property provable about
objects x of type T. Then q(y) should be true for objects y of type S where S is a subtype of
T.” What this means is that you should be able to substitute an object of a child class wher-
ever you use an object of the parent class—the child should honor the parent’s contract.
There’s another way of looking at this: we should be able to say that the child object is a kind
of the parent. We're used to saying this in English: a car is a vehicle, a cat is an animal, and
so on. This means that a cat should, at the very least, be capable of doing everything we say
that an animal can do.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Inheritance, Mixins, and Design ® 81

So, when you're looking for subclassing relationships while designing your application, be
on the lookout for these is-a relationships.

But...here’s the bad news. In the real world, there really aren’t that many true is a relationships.
Instead, it’s far more common to have has a or uses a relationships between things. The real
world is built using composition, not strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. Because inheritance
was the only scheme available for sharing code, we got lazy and said things like “My Person
class is a subclass of my DatabaseWrapper class.” (Indeed, the Rails framework makes just this
mistake.) But a person object is not a kind of database wrapper object. A person object uses
a database wrapper to provide persistence services.

Is this just a theoretical issue? No! Inheritance represents an incredibly tight coupling of two
components. Change a parent class, and you risk breaking the child class. But, even worse,
if code that uses objects of the child class relies on those objects also having methods defined
in the parent, then all that code will break, too. The parent class’s implementation leaks
through the child classes and out into the rest of the code. With a decent-sized program, this
becomes a serious inhibitor to change.

And that’s why we need to move away from inheritance in our designs. Instead, we need
to be using composition wherever we see a case of A uses a B, or A has a B. Our persisted Person
object won't subclass DataWrapper. Instead, it'll construct a reference to a database wrapper
object and use that object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of mixins and
metaprogramming comes to the rescue, because we can say this:

class Person
include Persistable
...

end

instead of this:

class Person < DataWrapper
...
end

If you're new to object-oriented programming, this discussion may feel remote and abstract.
But as you start to code larger and larger programs, we urge you to think about the issues
discussed here. Try to reserve inheritance for the times where it is justified. And try to explore
all the cool ways that mixins let you write decoupled, flexible code.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

6.1

CHAPTER 6

Standard Types

So far, we’ve been having fun implementing programs using arrays, hashes, and procs, but
we haven't really covered the other basic types in Ruby: numbers, strings, ranges, and regular
expressions. Let’s spend a few pages on these basic building blocks now.

Numbers

Ruby supports integers and floating-point, rational, and complex numbers. Integers can be
any length (up to a maximum determined by the amount of free memory on your system).

oo . 30 530 62 62 . .
Integers within a certain range (normally -27"..27"-1 or -2°°..2°"-1) are held internally in
binary form and are objects of class Fixnum. Integers outside this range are stored in objects
of class Bignum (currently implemented as a variable-length set of short integers). This process
is transparent, and Ruby automatically manages the conversion back and forth:

num = 10001
4.times do
puts "#{num.class}: #{num}"
num *= num
end

produces:
Fixnum: 10001
Fixnum: 100020001

Fixnum: 10004000600040001
Bignum: 100080028005600700056002800080001

You write integers using an optional leading sign, an optional base indicator (0 for octal, 0d
for decimal [the default], Ox for hex, or 0b for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string (some folks use them
in place of commas in larger numbers).

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123 456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
Oxaabb => 43707 # Fixnum - hexadecimal

0377 => 255 # Fixnum - octal

-0b10_1010 = -42 # Fixnum - binary (negated)

123 456_789 123 456 789 => 123456789123456789 # Bignum

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 6. Standard Types * 84

A numeric literal with a decimal point and/or an exponent is turned into a Float object, corre-
sponding to the native architecture’s double data type. You must both precede and follow
the decimal point with a digit (if you write 1.0e3 as 1.e3, Ruby will try to invoke the method
e3 on the object 1).

Ruby includes support for rational and complex numbers. Rational numbers are the ratio
of two integers—they are fractions—and hence have an exact representation (unlike floats).
Complex numbers represent points on the complex plane. They have two components, the
real and imaginary parts.

Ruby doesn’t have a literal syntax for representing rational and complex numbers. Instead,
you create them using explicit calls to the constructor methods Rational and Complex (although,
as we'll see, you can use the mathn library to make working with rational numbers easier).

Rational(3, 4) * Rational(2, 3) # => (1/2)
Rational("3/4") * Rational("2/3") # => (1/2)

Complex(1l, 2) * Complex(3, 4) # => (-5+101)
Complex("I+42i") * Complex("3+4i") # => (-5+101i)

All numbers are objects and respond to a variety of messages (listed in full starting in the
reference section at the end of this book). So, unlike (say) C++, you find the absolute value
of a number by writing num.abs, not abs(num).

Finally, we’ll offer a warning for Perl users. Strings that contain just digits are not automati-
cally converted into numbers when used in expressions. This tends to bite most often when
reading numbers from a file. For example, we may want to find the sum of the two numbers
on each line for a file such as the following;:

~N 0w
0 O

The following code doesn’t work:

some file.each do |line|

vl, v2 = line.split # split line on spaces
print vl + v2, " "

end

produces:

34 56 78

The problem is that the input was read as strings, not numbers. The plus operator concatenates
strings, so that’s what we see in the output. To fix this, use the Integer method to convert the
strings to integers:

some_file.each do |line]

vl, v2 = line.split

print Integer(vl) + Integer(v2), " "
end

produces:

7 11 15

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Numbers * 85

How Numbers Interact

Most of the time, numbers work the way you’d expect. If you perform some operation
between two numbers of the same class, the answer will typically be a number of that same
class (although, as we’ve seen, fixnums can become bignums, and vice versa). If the two
numbers are different classes, the result will have the class of the more general one. If you
mix integers and floats, the result will be a float; if you mix floats and complex numbers, the
result will be complex.

1+2 # => 3

1+ 2.0 # => 3.0

1.0 + 2 # => 3.0

1.0 + Complex(1,2) # => (2.0+21)

1 + Rational(2,3) # => (5/3)

1.0 + Rational(2,3) # => 1.6666666666666665

The return-type rule still applies when it comes to division. However, this often confuses
folks, because division between two integers yields an integer result:

0/ 2 #=>0.5
/ 2.0 #=>0.5
/ 2 #=>0

==

If you'd prefer that integer division instead return a fraction (a Rational number), require the
mathn library (described in the library section on page 768). This will cause arithmetic oper-
ations to attempt to find the most natural representation for their results. For integer division
where the result isn't an integer, a fraction will be returned.

22 /7 # =>3
Complex::I * Complex::I # => (-1+01)

require ‘'mathn'
22 /7 # => (22/7)
Complex::I * Complex::I # => -1

Note that 22/7 is effectively a rational literal once mathn is loaded (albeit one that’s calculated
at runtime).
Looping Using Numbers

Integers also support several iterators. We’ve seen one already on page 83: 5.times. Others
include upto and downto for iterating up and down between two integers. Class Numeric also
provides the more general method step, which is more like a traditional for loop.

3.times { print "X " }
1.upto(5) {|i| print i, " " }
99.downto(95) {|i| print i, " " }
50.step(80, 5) {|i| print i, " " }
produces:

XXX1234599 98 97 96 95 50 55 60 65 70 75 80

As with other iterators, if you leave the block off, the call returns an Enumerator object:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

6.2

Chapter 6. Standard Types * 86

10.downto(7).with index {|num, index| puts "#{index}: #{num}"}

produces:

: 10

wWwN =
~N 00 ©

Strings

Ruby strings are simply sequences of characters.' They normally hold printable characters,
but that is not a requirement; a string can also hold binary data. Strings are objects of class
String. Strings are often created using string literals—sequences of characters between
delimiters. Because binary data is otherwise difficult to represent within program source,
you can place various escape sequences in a string literal. Each is replaced with the corre-
sponding binary value as the program is compiled. The type of string delimiter determines
the degree of substitution performed. Within single-quoted strings, two consecutive back-
slashes are replaced by a single backslash, and a backslash followed by a single quote becomes
a single quote.

'escape using "\\"' # => escape using "\"
'That\'s right' # => That's right

Double-quoted strings support a boatload more escape sequences. The most common is
probably \n, the newline character. For a complete list, see Table 11, Substitutions in double-
quoted strings, on page 300. In addition, you can substitute the value of any Ruby code into
a string using the sequence #{ expr }. If the code is just a global variable, a class variable, or
an instance variable, you can omit the braces.

"Seconds/day: #{24*60*60}" # => Seconds/day: 86400
"#{'Ho! '*3}Merry Christmas!" # => Ho! Ho! Ho! Merry Christmas!
"Safe level is #$SAFE" # => Safe level is 0

The interpolated code can be one or more statements, not just an expression:

puts "now is #{ def the(a)
'the ' + a
end
the('time")
} for all bad coders..."

produces:

now is the time for all bad coders...

You have three more ways to construct string literals: %q, %Q, and here documents. %q and
%Q start delimited single- and double-quoted strings (you can think of %q as a thin quote,
asin', and %Q as a thick quote, asin "):

%q/general single-quoted string/ # => general single-quoted string
%Q!general double-quoted string! # => general double-quoted string
%Q{Seconds/day: #{24*60*60}} # => Seconds/day: 86400

In fact, the Q is optional:

1. Prior to Ruby 1.9, strings were sequences of 8-bit bytes.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Strings ® 87

%!general double-quoted string! # => general double-quoted string
%{Seconds/day: #{24*60*60}} # => Seconds/day: 86400

The character following the g or Q is the delimiter. If it is an opening bracket [, brace {,
parenthesis (, or less-than sign <, the string is read until the matching close symbol is found.
Otherwise, the string is read until the next occurrence of the same delimiter. The delimiter
can be any nonalphanumeric or nonmultibyte character.

Finally, you can construct a string using a here document:

string = <<END OF STRING

The body of the string is the input lines up to

one starting with the same text that followed the '<<'
END OF STRING

A here document consists of lines in the source up to but not including the terminating string
that you specify after the << characters. Normally, this terminator must start in column one.
However, if you put a minus sign after the << characters, you can indent the terminator:

string = <<-END_OF STRING
The body of the string is the input lines up to
one starting with the same text that followed the '<<'
END OF STRING

You can also have multiple here documents on a single line. Each acts as a separate string.
The bodies of the here documents are fetched sequentially from the source lines that follow:

print <<-STRING1, <<-STRING2
Concat
STRING1

enate

STRING2

produces:

Concat
enate

Note that Ruby does not strip leading spaces off the contents of the strings in these cases.

Strings and Encodings

Every string has an associated encoding. The default encoding of a string literal depends on
the encoding of the source file that contains it. With no explicit encoding, a source file (and
its strings) will be US-ASCII in Ruby 1.9 and UTF-8 in Ruby 2.

X i *Newin20i
plain_string = "dog"

puts RUBY_VERSION
puts "Encoding of #{plain string.inspect} is #{plain string.encoding}"
produces:

2.0.0
Encoding of "dog" is UTF-8

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 6. Standard Types * 88

If you override the encoding, you'll do that for all strings in the file:

#encoding: utf-8

plain_string = "dog"

puts "Encoding of #{plain string.inspect} is #{plain string.encoding}"
utf_string = "6og"

puts "Encoding of #{utf string.inspect} is #{utf_string.encoding}"

produces:

Encoding of "dog" is UTF-8
Encoding of "6og" is UTF-8

We'll have a lot more to say about encoding in Chapter 17, Character Encoding, on page 239.

Character Constants

Technically, Ruby does not have a class for characters—characters are simply strings of
length one. For historical reasons, character constants can be created by preceding the char-
acter (or sequence that represents a character) with a question mark:

?a # => "a" (printable character)

?\n # => "\n" (code for a newline (0x0a))
?2\C-a # => "\uPPO1" (control a)

?\M-a # => "\xE1" (meta sets bit 7)

?\M-\C-a # => "\x81" (meta and control a)

2\C-? # => "\uPO7F" (delete character)

Do yourself a favor and forget this section. It’s far easier to use regular octal and hex escape
sequences than to remember these ones. Use "a" rather than ?a, and use "\n" rather than ?\n.

Working with Strings

String is probably the largest built-in Ruby class, with more than one hundred standard
methods. We won’t go through them all here; the library reference has a complete list. Instead,
we’ll look at some common string idioms—things that are likely to pop up during day-to-
day programming.

Maybe we’ve been given a file containing information on a song playlist. For historical reasons
(are there any other kind?), the list of songs is stored as lines in the file. Each line holds the
name of the file containing the song, the song’s duration, the artist, and the title, all in vertical
bar-separated fields. A typical file may start like this:

tut_stdtypes/songdata

/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'
/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many methods to
extract and clean up the fields before we use them. At a minimum, we’ll need to

e break each line into fields,
e convert the running times from mm:ss to seconds, and
e remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#split will do the job nicely. In this case,
we’ll pass split a regular expression, \s*\|\s*/, that splits the line into tokens wherever split

http://media.pragprog.com/titles/ruby4/code/tut_stdtypes/songdata
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Strings * 89

finds a vertical bar, optionally surrounded by spaces. And, because the line read from the
file has a trailing newline, we’ll use String#chomp to strip it off just before we apply the split.
We'll store details of each song in a Struct that contains an attribute for each of the three fields.
(A Struct is simply a data structure that contains a given set of attributes—in this case the
title, name, and length. Struct is described in the reference section on page 693.)

Song = Struct.new(:title, :name, :length)

File.open("songdata") do |song file|
songs = []

song_file.each do |line]
file, length, name, title = line.chomp.split(/\s*\|\s*/)
songs << Song.new(title, name, length)

end

puts songs[1]
end
produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Unfortunately, whoever created the original file entered the artists’ names in columns, so
some of them contain extra spaces that we’d better remove before we go much further. We
have many ways of doing this, but probably the simplest is String#squeeze, which trims runs
of repeated characters. We'll use the squeeze! form of the method, which alters the string in
place:

Song = Struct.new(:title, :name, :length)

File.open("songdata") do |song file|
songs = []

song_file.each do |line]
file, length, name, title = line.chomp.split(/\s*\|[|s*/)
name.squeeze! (" ")
songs << Song.new(title, name, length)

end

puts songs[1]
end
produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Finally, we have the minor matter of the time format: the file says 2:58, and we want the
number of seconds, 178. We could use split again, this time splitting the time field around
the colon character:

"2:58".split(/:/) # => ["2", "58"]

Instead, we’ll use a related method. String#scan is similar to split in that it breaks a string into
chunks based on a pattern. However, unlike split, with scan you specify the pattern that you
want the chunks to match. In this case, we want to match one or more digits for both the
minutes and seconds components. The pattern for one or more digits is N\d+/:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

6.3

Chapter 6. Standard Types * 90

Song = Struct.new(:title, :name, :length)

File.open("songdata") do |song file|
songs = [1]

song file.each do |line|
file, length, name, title = line.chomp.split(/\s*\[|s*/)
name.squeeze! (" ")
mins, secs = length.scan(/\d+/)
songs << Song.new(title, name, mins.to i*60 + secs.to i)
end

puts songs[1]
end
produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length=178>

We could spend the next fifty pages looking at all the methods in class String. However, let’s
move on instead to look at a simpler data type: the range.

Ranges

Ranges occur everywhere: January to December, 0 to 9, rare to well done, lines 50 through
67, and so on. If Ruby is to help us model reality, it seems natural for it to support these
ranges. In fact, Ruby goes one better: it actually uses ranges to implement three separate
features: sequences, conditions, and intervals.

Ranges as Sequences

The first and perhaps most natural use of ranges is to express a sequence. Sequences have
a start point, an end point, and a way to produce successive values in the sequence. In Ruby,
these sequences are created using the .. and ... range operators. The two-dot form creates an
inclusive range, and the three-dot form creates a range that excludes the specified high value:

1..10

a'..'z
0..."cat".length

You can convert a range to an array using the to_a method and convert it to an Enumerator
. 2
using to_enum:

(1..10).to_a #=>1[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
('bar'..'bat').to_a # => ["bar", "bas", "bat"]

enum = ('bar'..'bat').to_enum

enum.next # => "bar"

enum.next # => "bas"

Ranges have methods that let you iterate over them and test their contents in a variety of
ways:

2. Sometimes people worry that ranges take a lot of memory. That’s not an issue: the range 1..100000 is
held as a Range object containing references to two Fixnum objects. However, convert a range into an
array, and all that memory will get used.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ranges ® 91

digits = 0..9

digits.include?(5) # => true
digits.max # =>9

digits.reject {|i| i <5} # => [5, 6, 7, 8, 9]
digits.inject(:+) # => 45

So far we’ve shown ranges of numbers and strings. However, as you'd expect from an object-
oriented language, Ruby ranges can be based on objects that you define. The only constraints
are that the objects must respond to succ by returning the next object in sequence and the
objects must be comparable using <=>. Sometimes called the spaceship operator, <=> compares
two values, returning -1, 0, or +1 depending on whether the first is less than, equal to, or
greater than the second.

In reality, this isn't something you do very often, so examples tend to be a bit contrived.
Here’s one—a class that presents numbers that are powers of 2. Because it defines <=> and
succ, we can use objects of this class in ranges:

class PowerOfTwo
attr_reader :value
def initialize(value)
@value = value
end
def <=>(other)
@value <=> other.value
end
def succ
PowerOfTwo.new(@value + @value)
end
def to s
@value.to_s
end
end

PowerOfTwo.new(4)
PowerOfTwo.new(32)

pl
p2

puts (pl..p2).to a

produces:

4
8

16
32

Ranges as Conditions

As well as representing sequences, ranges can also be used as conditional expressions. Here,
they act as a kind of toggle switch—they turn on when the condition in the first part of the
range becomes true, and they turn off when the condition in the second part becomes true.
For example, the following code fragment prints sets of lines from standard input, where
the first line in each set contains the word start and the last line contains the word end:

while line = gets
puts line if line =~ /start/ .. line =~ /end/
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 6. Standard Types ® 92

Behind the scenes, the range keeps track of the state of each of the tests. We’ll show some
examples of this in the description of loops on page 138 and in the .language section on page
320.

Ranges as Intervals

A final use of the versatile range is as an interval test: seeing whether some value falls

within the interval represented by the range. We do this using ===, the case equality operator:
(1..10) == 5 # => true
(1..10) === 15 # => false
(1..10) === 3.14159 # => true
(‘a'..'j') === 'c' # => true
(‘a'..'j') === 'z' # => false

This is most often used in case statements:

car _age = gets.to f # let's assume it's 9.5
case car_age

when 0...1
puts "Mmm.. new car smell"
when 1...3
puts "Nice and new"
when 3...10
puts "Reliable but slightly dinged"
when 10...30
puts "Clunker"
else
puts "Vintage gem"
end
produces:

Reliable but slightly dinged

Note the use of exclusive ranges in the previous example. These are normally the correct
choice in case statements. If instead we had written the following, we’d get the wrong answer
because 9.5 does not fall within any of the ranges, so the else clause triggers:

car age = gets.to f # let's assume it's 9.5
case car_age

when 0..0
puts "Mmm.. new car smell"
when 1..2
puts "Nice and new"
when 3..9
puts "Reliable but slightly dinged"
when 10..29
puts "Clunker"
else
puts "Vintage gem"
end
produces:

Vintage gem

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

7.1

CHAPTER 7

Regular Expressions

We probably spend most of our time in Ruby working with strings, so it seems reasonable
for Ruby to have some great tools for working with those strings. As we’ve seen, the String
class itself is no slouch —it has more than 100 methods. But there are still things that the basic
String class can’t do. For example, we might want to see whether a string contains two or
more repeated characters, or we might want to replace every word longer than fifteen
characters with its first five characters and an ellipsis. This is when we turn to the power of
regular expressions.

Now, before we get too far in, here’s a warning: there have been whole books written on
regular expressions.' There is complexity and subtlety here that rivals that of the rest of
Ruby. So if you've never used regular expressions, don't expect to read through this whole
chapter the first time. In fact, you'll find two emergency exits in what follows. If you're new
to regular expressions, I strongly suggest you read through to the first and then bail out.
When some regular expression question next comes up, come back here and maybe read
through to the next exit. Then, later, when you're feeling comfortable with regular expressions,
you can give the whole chapter a read.

What Regular Expressions Let You Do

A regular expression is a pattern that can be matched against a string. It can be a simple
pattern, such as the string must contain the sequence of letters “cat”, or the pattern can be complex,
such as the string must start with a protocol identifier, followed by two literal forward slashes, followed
by..., and so on. This is cool in theory. But what makes regular expressions so powerful is
what you can do with them in practice:

® You can test a string to see whether it matches a pattern.
* You can extract from a string the sections that match all or part of a pattern.
® You can change the string, replacing parts that match a pattern.

Ruby provides built-in support that makes pattern matching and substitution convenient
and concise. In this section, we’ll work through the basics of regular expression patterns and
see how Ruby supports matching and replacing based on those patterns. In the sections that
follow, we’ll dig deeper into both the patterns and Ruby’s support for them.

1. Such as Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools [Fri97]

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

7.2

Chapter 7. Regular Expressions ® 94

Ruby’s Regular Expressions

There are many ways of creating a regular expression pattern. By far the most common is
to write it between forward slashes. Thus, the pattern /cat/ is a regular expression literal in
the same way that "cat" is a string literal.

[cat/ is an example of a simple, but very common, pattern. It matches any string that contains
the substring cat. In fact, inside a pattern, all characters except., |, (,), [L L, L, - \,~ $ %
and ? match themselves. So, at the risk of creating something that sounds like a logic puzzle,
here are some patterns and examples of strings they match and don’t match:

/cat/ Matches "dog and cat" and "catch" but not "Cat" or "c.a.t."
/123/ Matches "86512312" and "abc123" but not "1.23"
/tab/ Matches "hit a ball" but not "table"

If you want to match one of the special characters literally in a pattern, precede it with a
backslash, so */ is a pattern that matches a single asterisk, and /\// is a pattern that matches
a forward slash.

Pattern literals are like double-quoted strings. In particular, you can use #{...} expression
substitutions in the pattern.
Matching Strings with Patterns

The Ruby operator =~ matches a string against a pattern. It returns the character offset into
the string at which the match occurred:

/cat/ =~ "dog and cat" # => 8
/cat/ =~ "catch" #=>0
/cat/ =~ "Cat" # => nil

You can put the string first if you prefer:’

"dog and cat" =~ /cat/ # => 8
"catch" =~ /cat/ #=>0
"Cat" =~ /cat/ # => nil

Because pattern matching returns nil when it fails and because nil is equivalent to false in a
boolean context, you can use the result of a pattern match as a condition in statements such
as if and while.

str = "cat and dog"

if str =~ /cat/

puts "There's a cat here somewhere"
end
produces:

There's a cat here somewhere

2. Some folks say this is inefficient, because the string will end up calling the regular expression code to
do the match. These folks are correct in theory but wrong in practice.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby’s Regular Expressions ® 95

The following code prints lines in testfile that have the string on in them:

File.foreach("testfile").with index do |line, index|
puts "#{index}: #{line}" if line =~ /on/

end

produces:

0: This is 1line one
3: And so on...

You can test to see whether a pattern does not match a string using !~:

File.foreach("testfile").with _index do |line, index|
puts "#{index}: #{line}" if line !~ /on/

end

produces:

1: This is line two
2: This is 1line three

Changing Strings with Patterns

The sub method takes a pattern and some replacement text.’ If it finds a match for the pattern
in the string, it replaces the matched substring with the replacement text.

str = "Dog and Cat"

new str = str.sub(/Cat/, "Gerbil")

puts "Let's go to the #{new str} for a pint."
produces:

Let's go to the Dog and Gerbil for a pint.

The sub method changes only the first match it finds. To replace all matches, use gsub. (The
g stands for global.)

str = "Dog and Cat"

new strl = str.sub(/a/, "*")
new str2 = str.gsub(/a/, "*")
puts "Using sub: #{new strl}"
puts "Using gsub: #{new str2}"

produces:

Using sub: Dog *nd Cat
Using gsub: Dog *nd C*t

Both sub and gsub return a new string. (If no substitutions are made, that new string will just
be a copy of the original.)

If you want to modify the original string, use the sub! and gsub! forms:

str = "now is the time"
str.sub!(/i/, "*")
str.gsub!(/t/, "T")
puts str

produces:

now *s The Time

3. Actually, it does more than that, but we won't get to that for a while.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

7.3

Chapter 7. Regular Expressions ® 96

Unlike sub and gsub, sub! and gsub! return the string only if the pattern was matched. If no
match for the pattern is found in the string, they return nil instead. This means it can make
sense (depending on your need) to use the ! forms in conditions.

So, at this point you know how to use patterns to look for text in a string and how to substitute
different text for those matches. And, for many people, that’s enough. So if you're itching
to get on to other Ruby topics, now is a good time to move on to the next chapter. At some
point, you'll likely need to do something more complex with regular expressions (for
example, matching a time by looking for two digits, a colon, and two more digits). You can
then come back and read the next section.

Or, you can just stay right here as we dig deeper into patterns, matches, and replacements.
Digging Deeper

Like most things in Ruby, regular expressions are just objects— they are instances of the class
Regexp. This means you can assign them to variables, pass them to methods, and so on:

str = "dog and cat"
pattern = /nd/
pattern =~ str # => 5
str =~ pattern # => 5

You can also create regular expression objects by calling the Regexp class’s new method or by
using the %r{...} syntax. The %r syntax is particularly useful when creating patterns that
contain forward slashes:

/mm\ /dd/ # => /mm\/dd/
Regexp.new("mm/dd") # => /mm\/dd/
%r{mm/dd} # => /mm\/dd/

If you're like us, you'll sometimes get confused by regular expressions. You create something that
should work, but it just doesn’t seem to match. That's when we fall back to irb. We'll cut and paste the

regular expression into irb and then try to match it against strings. We'll slowly remove portions until
we get it to match the target string and add stuff back until it fails. At that point, we’ll know what we
were doing wrong.

Regular Expression Options

A regular expression may include one or more options that modify the way the pattern
matches strings. If you're using literals to create the Regexp object, then the options are one
or more characters placed immediately after the terminator. If you're using Regexp.new, the
options are constants used as the second parameter of the constructor.

i Caseinsensitive. The pattern match will ignore the case of letters in the pattern and string.
(The old technique of setting $= to make matches case insensitive no longer works.)

0 Substitute once. Any #{...} substitutions in a particular regular expression literal will be
performed just once, the first time it is evaluated. Otherwise, the substitutions will be
performed every time the literal generates a Regexp object.

report erratum - discuss

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Digging Deeper ® 97

"

m Multiline mode. Normally, “.” matches any character except a newline. With the /m option,

“ o

. matches any character.

x Extended mode. Complex regular expressions can be difficult to read. The x option allows
you to insert spaces and newlines in the pattern to make it more readable. You can also
use # to introduce comments.

Another set of options allows you to set the language encoding of the regular expression. If
none of these options is specified, the regular expression will have US-ASCII encoding if it
contains only 7-bit characters. Otherwise, it will use the default encoding of the source file
containing the literal: n: no encoding (ASCII), e: EUC, s: SJIS, and u: UTE-8.

Matching Against Patterns

Once you have a regular expression object, you can match it against a string using the (Reg-
exp#match(string) method or the match operators =~ (positive match) and !~ (negative match).
The match operators are defined for both String and Regexp objects. One operand of the match
operator must be a regular expression.

name = "Fats Waller"

name =~ /a/ #=>1

name =~ /z/ # => nil

/a/ =~ name #=>1

/a/.match(name) # => #<MatchData "a">
Regexp.new("all").match(name) # => #<MatchData "all">

The match operators return the character position at which the match occurred, while the
match method returns a MatchData object. In all forms, if the match fails, nil is returned.

After a successful match, Ruby sets a whole bunch of magic variables. For example, $&
receives the part of the string that was matched by the pattern, $° receives the part of the
string that preceded the match, and §$' receives the string after the match. However, these
particular variables are considered to be fairly ugly, so most Ruby programmers instead use
the MatchData object returned from the match method, because it encapsulates all the informa-
tion Ruby knows about the match. Given a MatchData object, you can call pre_match to return
the part of the string before the match, post_match for the string after the match, and index
using [0] to get the matched portion.

We can use these to write a show_regexp, a method that shows where a pattern matches:

tut_regexp/show_match.rb
def show regexp(string, pattern)
match = pattern.match(string)
if match
"#{match.pre_match}->#{match[0]}<-#{match.post match}"
else
"no match"
end
end

We could use this method like this:

show _regexp('very interesting', /t/) # => very in->t<-eresting
show regexp('Fats Waller', /1le/) # => Fats Wa->lle<-r
show regexp('Fats Waller', /z/) # => no match

http://media.pragprog.com/titles/ruby4/code/tut_regexp/show_match.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 7. Regular Expressions ® 98

Deeper Patterns

We said earlier that, within a pattern, all characters match themselves except. | () []{}+\
~$*and ?. Let’s dig a bit deeper into this.

First, always remember that you need to escape any of these characters with a backslash if
you want them to be treated as regular characters to match:

show _regexp('yes | no', /\|/) # => yes ->|<- no
show regexp('yes (no)', /\(nol)/) # => yes ->(no)<-
show _regexp('are you sure?', /e\?/) # => are you sur->e?<-

Now let’s see what some of these characters mean if you use them without escaping them.

Anchors

By default, a regular expression will try to find the first match for the pattern in a string.
Match /iss/ against the string “Mississippi,” and it will find the substring “iss” starting at
position 1 (the second character in the string). But what if you want to force a pattern to
match only at the start or end of a string?

The patterns ~ and $ match the beginning and end of a line, respectively. These are often
used to anchor a pattern match; for example, /~option/ matches the word option only if it
appears at the start of a line. Similarly, the sequence \A matches the beginning of a string,
and \z and \Z match the end of a string. (Actually, \Z matches the end of a string unless the
string ends with \n, in which case it matches just before the \n.)

str = "this is\nthe time"
show regexp(str, /"~the/) # => this is\n->the<- time
show regexp(str, /is$/) # => this ->is<-\nthe time

show regexp(str, /\Athis/) # => ->this<- is\nthe time
show regexp(str, /\Athe/) # => no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries, respec-
tively. Word characters are ASCII letters, numbers, and underscores:

show regexp("this is\nthe time", /\bis/) # => this ->is<-\nthe time
show regexp("this is\nthe time", /\Bis/) # => th->is<- is\nthe time

Character Classes

A character class is a set of characters between brackets: [characters] matches any single char-
acter between the brackets, so [aeiou] matches a vowel, [,.;;!?] matches some punctuation, and
so on. The significance of the special regular expression characters—.|(){+"$*?—is turned
off inside the brackets. However, normal string substitution still occurs, so (for example) \b
represents a backspace character, and \n represents a newline (see Table 11, Substitutions in
double-quoted strings, on page 300). In addition, you can use the abbreviations shown in Table
2, Character class abbreviations, on page 101, so that \s matches any whitespace charactér, not
just a literal space:

show regexp('Price $12.', /laeioul]/) # => Pr->i<-ce $12.
show regexp('Price $12.', /[\s]/) # => Price-> <-$12.
show regexp('Price $12.', /[$.1/) # => Price ->$<-12.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Digging Deeper ® 99

Within the brackets, the sequence c¢;-c, represents all the characters from c; to ¢, in the current
encoding;:

a = 'see [The PickAxe-page 123]'

show regexp(a, /[A-Fl/) # => see [The Pick->A<-xe-page 123]
show regexp(a, /[A-Fa-f]/) # => s->e<-e [The PickAxe-page 123]
show regexp(a, /[0-9]/) # => see [The PickAxe-page ->1<-23]

show regexp(a, /[0-9][0-9]1/) # => see [The PickAxe-page ->12<-3]

You can negate a character class by putting an up arrow (~, sometimes called a caret)
immediately after the opening bracket:

show_regexp('Price $12.', /["A-Z1/) # => P->r<-ice $12.
show regexp('Price $12.', /[™\wl/) # => Price-> <-$12.
show _regexp('Price $12.', /la-z]["a-z]/) # => Pric->e <-$12.

Some character classes are used so frequently that Ruby provides abbreviations for them.
These abbreviations are listed in Table 2, Character class abbreviations, on page 101 —they may
be used both within brackets and in the body of a pattern.

show regexp('It costs $12.', /\s/) # => It-> <-costs $12.
show regexp('It costs $12.', /\d/) # => It costs $->1<-2.

If you look at the table, you'll see that some of the character classes have different interpre-
tations depending on the character set option defined for the regular expression. Basically,
these options tell the regexp engine whether (for example) word characters are just the ASCII
alphanumerics, or whether they should be extended to include Unicode letters, marks,
numbers, and connection punctuation. The options are set using the sequence (?option), where
the option is one of d (for Ruby 1.9 behavior), a for ASCII-only support, and u for full Unicode
support. If you don’t specify an option, it defaults to (?d).

show regexp('dber.', /(?a)\w+/) # => (->ber<-.
show regexp('dber.', /(?d)\w+/) # => (->ber<-.
show regexp('dber.', /(?u)\w+/) # => ->lber<-.
show regexp('dber.', /(?d)\W+/) # => ->l<-ber.
show regexp('dber.', /(?u)\W+/) # => lber->.<-

The POSIX character classes, as shown in Table 3, Posix character classes, on page 114, corre-
spond to the ctype(3) macros of the same names. They can also be negated by putting an up
arrow (or caret) after the first colon:

show regexp('Price $12.', /[aeiou]/) # => Pr->i<-ce $12.
show regexp('Price $12.', /[[:digit:]1/) # => Price $->1<-2.
show regexp('Price $12.', /[[:space:]1/) # => Price-> <-$12.
show regexp('Price $12.', /[[:~alpha:]11/) # => Price-> <-$12.
show regexp('Price $12.', /[[:punct:]aeioul/) # => Pr->i<-ce $12.

If you want to include the literal characters] and - in a character class, escape them with \:

a = 'see [The PickAxe-page 123]'

show regexp(a, /[\]1/) # => see [The PickAxe-page 123->]<-
show regexp(a, /[0-9\]]1/) # => see [The PickAxe-page ->1<-23]
show regexp(a, /[\d\-1/) # => see [The PickAxe->-<-page 123]

*Newin2.0¢

http://www.freebsd.org/cgi/man.cgi?query=ctype&sektion=3
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 7. Regular Expressions ® 100

You can create the intersection of character classes using &&. So, to match all lowercase ASCIL
letters that aren’t vowels, you could use this:

str = "now is the time"
str.gsub(/[a-z&&["~aeioull/, '*') # => "ko* i* **e *xj*e"

The \p construct gives you an encoding-aware way of matching a character with a particular
Unicode property (shown in Table 4, Unicode character properties, on page 114):

encoding: utf-8

string = "9y/ax = 2nx"

show_regexp(string, /\p{Alnum}/) # => 9->y<-/dx = 2nx
show_regexp(string, /\p{Digit}/) # => dy/ox = ->2<-nx
show regexp(string, /\p{Space}/) # => ay/ax-> <-= 2nx
show_regexp(string, /\p{Greek}/) # => ay/ox = 2->n<-x
show_regexp(string, /\p{Graph}/) # => ->d<-y/ax = 2nx

Finally, a period (.) appearing outside brackets represents any character except a newline
(though in multiline mode it matches a newline, too):

a = "It costs $12.'

show regexp(a, /c.s/) # => It ->cos<-ts $12.
show regexp(a, /./) # => ->I<-t costs $12.
show regexp(a, /\./) # => It costs $12->.<-

Repetition

When we specified the pattern that split the song list line, \s¥\|\s*/, we said we wanted to
match a vertical bar surrounded by an arbitrary amount of whitespace. We now know that
the \s sequences match a single whitespace character and \| means a literal vertical bar, so it
seems likely that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk is
one of a number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then

r* Matches zero or more occurrences of r
r+ Matches one or more occurrences of r
r? Matches zero or one occurrence of r

r{m,n} Matches at least m and at most n occurrences of r
r{m,} Matches at least m occurrences of r
r{,n} Matches at most n occurrences of r
r{m} Matches exactly m occurrences of r

These repetition constructs have a high precedence—they bind only to the immediately
preceding matching construct in the pattern. /ab+/ matches an a followed by one or more b’s,
not a sequence of ab’s.

These patterns are called greedy, because by default they will match as much of the string as
they can. You can alter this behavior and have them match the minimum by adding a
question mark suffix. The repetition is then called lazy—it stops once it has done the minimum
amount of work required.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Digging Deeper *® 101

Sequence Logical intent
Characters matched

\d Decimal digit
(?a), (2d) — [0-9]
(?u) — Decimal_Number

\D Any character except a decimal digit
\h Hexadecimal digit character
[0-9a-fA-F]
\H Any character except a hex digit
\R A generic linebreak sequence. May match the two characters \n\n. (new in 12.0%)
\s Whitespace

(?a), (2d) — [\t\r\n\f] (?a), (?d) — [0-9]
(?u) — [\t\n\r\x{000B}\x{000C}\x{0085}] plus Line_Separator, Paragraph_Separator,
Space_Separator

\S Any character except whitespace

\w A “word” character (really, a programming language identifier)
(?a), (?d) — [a-zA-Z0-9_]
(?u) — Letter, Mark, Number ,Connector_Punctuation

\W Any character except a word character

\X An extended Unicode grapheme (two or more characters that combine to form
a single visual character). (new in 2.04)

Table 2—Character class abbreviations
For some of these classes, the meaning depends on the character set mode selected for the pattern. In these cases,
the dfferent options are shown like this:

(7a), (?d) — [a-zA-Z0-9_]
(?u) — Letter, Mark, Number, Connector_Punctuation

In this case, the first line applies to ASCll and default modes, and the second to unicode. In the second part of each
line, the [...]is a conventional character class. Words in italic are Unicode character classes.

a = "The moon is made of cheese"

show _regexp(a, /\w+/) # => ->The<- moon is made of cheese
show regexp(a, /\s.*\s/) # => The-> moon is made of <-cheese
show regexp(a, /\s.*?\s/) # => The-> moon <-1s made of cheese
show regexp(a, /[aeioul{2,99}/) # => The m->o00<-n is made of cheese
show regexp(a, /mo?0/) # => The ->moo<-n 1is made of cheese
here's the lazy version

show _regexp(a, /mo??0/) # => The ->mo<-on 1is made of cheese

(There’s an additional modifier, +, that makes them greedy and also stops backtracking, but
that will have to wait until the advanced section of the chapter.)

Be very careful when using the * modifier. It matches zero or more occurrences. We often
forget about the zero part. In particular, a pattern that contains just a * repetition will always
match, whatever string you pass it. For example, the pattern /a*/ will always match, because
every string contains zero or more a’s.

report erratum

- discuss

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 7. Regular Expressions ® 102

a = "The moon is made of cheese"

both of these match an empty substring at the start of the string
show regexp(a, /m*/) # => -><-The moon is made of cheese

show regexp(a, /Z*/) # => -><-The moon is made of cheese

Alternation

We know that the vertical bar is special, because our line-splitting pattern had to escape it
with a backslash. That’s because an unescaped vertical bar, as in |, matches either the construct
that precedes it or the construct that follows it:

a = "red ball blue sky"

show _regexp(a, /d|e/) # => r->e<-d ball blue sky
show regexp(a, /al|lu/) # => red b->al<-1 blue sky
show regexp(a, /red ball|angry sky/) # => ->red ball<- blue sky

There’s a trap for the unwary here, because | has a very low precedence. The last example
in the previous lines matches red ball or angry sky, not red ball sky or red angry sky. To match
red ball sky or red angry sky, you'd need to override the default precedence using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within the
group is treated as a single regular expression.

This matches an 'a' followed by one or more
show regexp('banana', /an+/) # => b->an<-ana
This matches the sequence 'an' one or more times
show regexp('banana', /(an)+/) # => b->anan<-a

n's

a = 'red ball blue sky'

show regexp(a, /blue|red/) # => ->red<- ball blue sky
show regexp(a, /(blue|red) \w+/) # => ->red ball<- blue sky
show regexp(a, /(red|blue) \w+/) # => ->red ball<- blue sky
show regexp(a, /red|blue \w+/) # => ->red<- ball blue sky

show regexp(a, /red (ball|angry) sky/) # => no match
a = 'the red angry sky'
show regexp(a, /red (ball|angry) sky/) # => the ->red angry sky<-

Parentheses also collect the results of pattern matching. Ruby counts opening parentheses
and for each stores the result of the partial match between it and the corresponding closing
parenthesis. You can use this partial match both within the rest of the pattern and in your
Ruby program. Within the pattern, the sequence \1 refers to the match of the first group, \2
the second group, and so on. Outside the pattern, the special variables $1, $2, and so on,
serve the same purpose.

/(\d\d): (\d\d)(..)/ =~ "12:50am" # => 0

"Hour is #$1, minute #$2" # => "Hour is 12, minute 50"
/((ld\d): (\did))(..)/ =~ "12:50am" # => 0O

"Time is #$1" # => "Time is 12:50"

"Hour is #$2, minute #$3" # => "Hour is 12, minute 50"
"AM/PM is #$4" # => "AM/PM is am"

If you're using the MatchData object returned by the match method, you can index into it to
get the corresponding subpatterns:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Digging Deeper ® 103

md = /(\d\d):(\d\d)(..)/.match("12:50am")
"Hour is #{md[11}, minute #{md[2]}" # => "Hour is 12, minute 50"
md = /((\d\d):(\d\d))(..)/.match("12:50am")

"Time is #{md[1]}" # => "Time 1is 12:50"
"Hour is #{md[2]1}, minute #{md[3]}" # => "Hour is 12, minute 50"
"AM/PM is #{md[4]1}" # => "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for various
forms of repetition:

match duplicated letter

show regexp('He said "Hello"', /(\w)\1/) # => He said "He->ll<-0"
match duplicated substrings

show regexp('Mississippi', /(\w+)\1/) # => M->ississ<-ippi

Rather than use numbers, you can also use names to refer to previously matched content.
You give a group a name by placing ?<name> immediately after the opening parenthesis.
You can subsequently refer to this named group using \k<name> (or \k'name").

match duplicated letter
str = 'He said "Hello"'
show regexp(str, /(?<char>\w)\k<char>/) # => He said "He->ll<-0"

match duplicated adjacent substrings
str = 'Mississippi'
show regexp(str, /(?<seq>\w+)\k<seq>/) # => M->ississ<-ippi

The named matches in a regular expression are also available as local variables, but only if
you use a literal regexp and that literal appears on the left hand side of the =~ operator. (So
you can’t assign a regular expression object to a variable, match the contents of that variable
against a string, and expect the local variables to be set.)

/(?<hour>\d\d): (?<min>\d\d)(..)/ =~ "12:50am" # => 0
"Hour 1is #{hour}, minute #{min}" # => "Hour 1is 12, minute 50"

You can mix named and position-based references
"Hour is #{hour}, minute #{$2}" # => "Hour is 12, minute 50"
"Hour 1is #{$1}, minute #{min}" # => "Hour 1is 12, minute 50"

Pattern-Based Substitution

We've already seen how sub and gsub replace the matched part of a string with other text.
In those previous examples, the pattern was always fixed text, but the substitution methods
work equally well if the pattern contains repetition, alternation, and grouping.

a = "quick brown fox"

a.sub(/[aeioul/, '*') # => "qg*ick brown fox"
a.gsub(/[aeioul/, '*') # => "qg**ck br*wn f*x"
a.sub(/\s\S+/, '') # => "quick fox"
a.gsub(/\s\S+/, '") # => "quick"

The substitution methods can take a string or a block. If a block is used, it is passed the
matching substring, and the block’s value is substituted into the original string.

a = "quick brown fox"
a.sub(/”./) {|match| match.upcase } # => "Quick brown fox"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 7. Regular Expressions ® 104

a.gsub(/[aeiou]/) {]|vowel]| vowel.upcase } # => "qUIck brOwn fOx"

Maybe we want to normalize names entered by users into a web application. They may enter
DAVE THOMAS, dave thomas, or dAvE tHoMas, and we’d like to store it as Dave Thomas.
The following method is a simple first iteration. The pattern that matches the first character
of a word is \b\w—look for a word boundary followed by a word character. Combine this
with gsub, and we can hack the names:

def mixed case(name)
name.downcase.gsub(/\b\w/) {|first| first.upcase }
end
mixed case("DAVE THOMAS") # => "Dave Thomas"
mixed case("dave thomas") # => "Dave Thomas"
mixed case("dAvE tHoMas") # => "Dave Thomas"

There’s an idiomatic way to write the substitution in Ruby 1.9, but we’ll have to wait until
The Symbol.to_proc Trick, on page 352 to see why it works:

def mixed case(name)
name.downcase.gsub(/\b\w/, &:upcase)
end

mixed case("dAvE tHoMas") # => "Dave Thomas"

You can also give sub and gsub a hash as the replacement parameter, in which case they will
look up matched groups and use the corresponding values as replacement text:
replacement = { "cat" => "feline", "dog" => "canine" }

replacement.default = "unknown"

"cat and dog".gsub(/\w+/, replacement) # => "feline unknown canine"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the pattern, standing
for the nth group matched so far. The same sequences can be used in the second argument
of sub and gsub.

puts "fred:smith".sub(/(\w+):(\w+)/, '\2, \1")
puts "nercpyitno".gsub(/(.)(.)/, "12\1")

produces:

smith, fred
encryption

You can also reference named groups:

puts "fred:smith".sub(/(?<first>\w+): (?<last>\w+)/, '\k<last>, \k<first>')
puts "nercpyitno".gsub(/(?<cl>.)(?<c2>.)/, '\k<c2>\k<cl>")

produces:

smith, fred

encryption

Additional backslash sequences work in substitution strings: \& (last match), \+ (last matched
group), \" (string prior to match), \' (string after match), and \\ (a literal backslash).

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

7.4

Advanced Regular Expressions ® 105

It gets confusing if you want to include a literal backslash in a substitution. The obvious
thing to write is str.gsub(/AV, W)

Clearly, this code is trying to replace each backslash in str with two. The programmer doubled
up the backslashes in the replacement text, knowing that they’d be converted to \\ in syntax
analysis. However, when the substitution occurs, the regular expression engine performs
another pass through the string, converting \\ to \, so the net effect is to replace each single
backslash with another single backslash. You need to write gsub(/\V, "W\W\\\')!

str = 'albl\c' # => "alb\c"
str.gsub(/\\/, "tiLLLLLY) # = "allbl\c"

However, using the fact that \& is replaced by the matched string, you could also write this:

str = 'alb\c' # => "alblc"
str.gsub(/\\/, '"\&\&') # => "allbl\c"

If you use the block form of gsub, the string for substitution is analyzed only once (during
the syntax pass), and the result is what you intended:

str = 'albl\c' # => "alb\c"
str.gsub(/\\/) { "L\W\" 3} # => "allbl\c"

At the start of this chapter, we said that it contained two emergency exits. The first was after
we discussed basic matching and substitution. This is the second: you now know as much
about regular expressions as the vast majority of Ruby developers. Feel free to break away
and move on to the next chapter. But if you're feeling brave....

Advanced Regular Expressions

You may never need the information in the rest of this chapter. But, at the same time,
knowing some of the real power in the Ruby regular expression implementation might just
dig you out of a hole.

Regular Expression Extensions

Ruby uses the Onigmo regular expression library. This offers a large number of extensions
over traditional Unix regular expressions. Most of these extensions are written between the
characters (? and). The parentheses that bracket these extensions are groups, but they do
not necessarily generate backreferences—some do not set the values of \1, $1, and so on.

The sequence (?# comment) inserts a comment into the pattern. The content is ignored during
pattern matching. As we’ll see, commenting complex regular expressions can be as helpful
as commenting complex code.

(7:re) makes re into a group without generating backreferences. This is often useful when
you need to group a set of constructs but don’t want the group to set the value of $1 or
whatever. In the example that follows, both patterns match a date with either colons or
slashes between the month, day, and year. The first form stores the separator character
(which can be a slash or a colon) in $2 and $4, but the second pattern doesn't store the sepa-
rator in an external variable.

date = "12/25/2010"

4. Onigmo is an extension of the Oniguruma regular expression engine.

*Newin2.0¢

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

*Newin2.0¢

Chapter 7. Regular Expressions ® 106

date =~ Ssr{(\d+)(/[:)(\d+)(/]:)(\d+)}
[$1,$2,%$3,%4,$5] # => ["12", "/", "25", "/", "2010"]

date =~ sr{(1d+)(7:/]:) (1d+)(?:/]:) (\d+)}
[$1,$2,$3] # => ["12", "25", "2010"]

Lookahead and Lookbehind

You'll sometimes want to match a pattern only if the matched substring is preceded by or
followed by some other pattern. That is, you want to set some context for your match but
don’t want to capture that context as part of the match.

For example, you might want to match every word in a string that is followed by a comma,
but you don’t want the comma to form part of the match. Here you could use the charmingly
named zero-width positive lookahead extension. (?=re) matches re at this point but does not
consume it—you can look forward for the context of a match without affecting $&. In this
example, we’ll use scan to pick out the words:

str = "red, white, and blue"
str.scan(/[a-z]+(?=,)/) # => ["red", "white"]

You can also match before the pattern using (?<=re) (zero-width positive lookbehind). This lets
you look for characters that precede the context of a match without affecting $&. The following
example matches the letters dog but only if they are preceded by the letters hot:

show_regexp("seadog hotdog", /(?<=hot)dog/) # => seadog hot->dog<-
For the lookbehind extension, re either must be a fixed length or consist of a set of fixed-

length alternatives. That is, (?<=aa) and (?<=aa|bbb) are valid, but (?<=a+b) is not.

Both forms have negated versions, (?!re) and (?<!re), which are true if the context is not present
in the target string.

The \K sequence is related to backtracking. If included in a pattern, it doesn't affect the
matching process. However, when Ruby comes to store the entire matched string in $& or
\&, it only stores the text to the right of the \K.

show regexp("thx1138", /l[a-z]+\K\d+/) # => thx->1138<-

Controlling Backtracking

Say you're given the problem of searching a string for a sequence of Xs not followed by an
O. You know that a string of Xs can be represented as X+, and you can use a lookahead to
check that it isn’t followed by an O, so you code up the pattern /(X+)(?!0)/. Let’s try it:

re = /(X+)(?'0)/

This one works
re =~ "test XXXY" # => 5
$1 # => "XXX"

But, unfortunately, so does this one
re =~ "test XXX0" # => 5
$1 # => "XX"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Advanced Regular Expressions ® 107

Why did the second match succeed? Well, the regular expression engine saw the X+ in the
pattern and happily gobbled up all the Xs in the string. It then saw the pattern (?!0), saying
that it should not now be looking at an O. Unfortunately, it is looking at an O, so the match
doesn’t succeed. But the engine doesn’t give up. No sir! Instead it says, “Maybe I was wrong
to consume every single X in the string. Let’s try consuming one less and see what happens.”
This is called backtracking—when a match fails, the engine goes back and tries to match a
different way. In this case, by backtracking past a single character, it now finds itself looking
at the last X in the string (the one before the final O). And that X is not an O, so the negative
lookahead succeeds, and the pattern matches. Look carefully at the output of the previous
program: there are three Xs in the first match but only two in the second.

But this wasn't the intent of our regexp. Once it finds a sequence of Xs, those Xs should be
locked away. We don’t want one of them being the terminator of the pattern. We can get
that behavior by telling Ruby not to backtrack once it finds a string of Xs. There are a couple
of ways of doing this.

The sequence (?>re) nests an independent regular expression within the first regular
expression. This expression is anchored at the current match position. If it consumes charac-
ters, these will no longer be available to the higher-level regular expression. This construct
therefore inhibits backtracking.

Let’s try it with our previous code:

re = /((?>X+))(?!0)/

This one works
re =~ "test XXXy" # =>5
$1 # => "XXX"

Now this doesn't match
re =~ "test XXX0" # => nil
$1 # => nil

And this finds the second string of Xs
re =~ "test XXX0 XXXXY" # => 10
$1 #o=> XXX

You can also control backtracking by using a third form of repetition. We're already seen
greedy repetition, such as re+, and lazy repetition, re+?. The third form is called possessive.
You code it using a plus sign after the repetition character. It behaves just like greedy repe-
tition, consuming as much of the string as it can. But once consumed, that part of the string
can never be reexamined by the pattern—the regular expression engine can’t backtrack past
a possessive qualifier. This means we could also write our code as this:

re = /(X++)(?'0)/

re =~ "test XXXY" #=>5

$1 # o=> "XXX"
re =~ "test XXX0" # => nil
$1 # => nil
re =~ "test XXX0 XXXXY" # => 10

$1 #o=> "XXXX"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 7. Regular Expressions ® 108

Backreferences and Named Matches

Within a pattern, the sequences \n (where 7 is a number), \k'n', and \k<n> all refer to the n™
captured subpattern. Thus, the expression /(...)\1/ matches six characters with the first three
characters being the same as the last three.

Rather than refer to matches by their number, you can give them names and then refer to
those names. A subpattern is named using either of the syntaxes (?<name>...) or (?'name"...).
You then refer to these named captures using either \k<name> or \k'name'.

For example, the following shows different ways of matching a time range (in the form
hh:mm-hh:mm) where the hour part is the same:

same = "12:15-12:45"
differ = "12:45-13:15"

use numbered backreference
same =~ /(\d\d):\d\d-\1:\1d\d/ # =0
differ =~ /(\d\d):\d\d-\1:\d\d/ # => nil

use named backreference
same =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => 0
differ =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => nil

Negative backreference numbers count backward from the place they’re used, so they are
relative, not absolute, numbers. The following pattern matches four-letter palindromes
(words that read the same forward and backward).

"abab" =~ /(.)(.)\k<-1>\k<-2>/ # => nil
"abba" =~ /(.)(.)\k<-1>\k<-2>/ # => 0

You can invoke a named subpattern using \g<name> or \g<number>. Note that this reexecutes
the match in the subpattern, in contrast to \k<name>, which matches whatever is matched
by the subpattern:

re = /(?<color>red|green|blue) \w+ |g<color> |w+/

re =~ "red sun blue moon" # => 0
re =~ "red sun white moon" # => nil

You can use \g recursively, invoking a pattern within itself. The following code matches a
string in which braces are properly nested:

re =/
A
(?<brace_expression>
{
(
[~{}] # anything other than braces
| # ...0r...
\g<brace_expression> # a nested brace expression
)*
}
)
\Z

/X

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Advanced Regular Expressions ® 109

We use the x option to allow us to write the expression with lots of space, which makes it
easier to understand. We also indent it, just as we would indent Ruby code. And we can also
use Ruby-style comments to document the tricky stuff. You can read this regular expression
as follows: a brace expression is an open brace, then a sequence of zero or more characters
or brace expressions, and then a closing brace.

Nested Groups

The ability to invoke subpatterns recursively means that backreferences can get tricky. Ruby
solves this by letting you refer to a named or numbered group at a particular level of the
recursion—add a +n or -n for a capture at the given level relative to the current level.

Here’s an example from the Oniguruma cheat sheet. It matches palindromes:

/NA(?7<a>|. | (?:(?7.)|g<a>\k<b+0>))\z/

That'’s pretty hard to read, so let’s spread it out:

tut_regexp/palindrome_re.rb
palindrome matcher = /
\A
(?<palindrome>
nothing, or
| \w # a single character, or
| (?: # x <palindrome> x
(?<some_letter>\w)
\g<palindrome>
| k<some_letter+0>
)
)
\z
/X

palindrome matcher.match "madam" # => madam
palindrome matcher.match "m" #=>m
palindrome matcher.match "adam" # =>

A palindrome is an empty string, a string containing a single character, or a character followed
by a palindrome, followed by that same character. The notation \k<some_letter+0> means that
the letter matched at the end of the inner palindrome will be the same letter that was at the
start of it. Inside the nesting, however, a different letter may wrap the interior palindrome.

Conditional Groups

Just because it’s all been so easy so far, Onigmo adds a new twist to regular expressions —con-
ditional subexpressions.

Say you were validating a list of banquet attendees:

Mr Jones and Sally

Mr Bond and Ms Moneypenny
Samson and Delilah

Dr Jekyll and himself

Ms Hinky Smith and Ms Jones
Dr Wood and Mrs Wood

Thelma and Louise

*Newin2.0¢

http://media.pragprog.com/titles/ruby4/code/tut_regexp/palindrome_re.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 7. Regular Expressions ® 110

The rule is that if the first person in the list has a title, then so should the second. This means
that the first and fourth lines in this list are invalid.

We can start with a pattern to match a line with an optional title and a name. We know we’ve
reached the end of the name when we find the word and with spaces around it.

re = %r{ (?:(Mrs | Mr | Ms | Dr)\s)? (.*?) |s and \s }x

"Mr Bond and Ms Monneypenny" =~ re # => 0
[$1, $2] # => ["Mr", "Bond"]
"Samson and Delilah" =~ re # =>0
[$1, $2 1] # => [nil, "Samson"]

We’ve defined the regexp with the x (extended) option so we can include whitespace. We
also used the ?: modifier on the group that defines the optional title followed by a space.
This stops that group getting captured into $1. We do however capture just the title part.

So now we need to match the second name. We can start with the same code as for the first.

re = %r{
(?:(Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(?:(Mrs | Mr | Ms | Dr)is)? (.+)
Ix
"Mr Bond and Ms Monneypenny" =~ re # => 0
[$1, $2, $3, $4 1] # => ["Mr", "Bond", "Ms", "Monneypenny"]
"Samson and Delilah" =~ re # =>0
[$1, $2, $3, %4] # => [nil, "Samson", nil, "Delilah"]

Before we go any further, let’s clean up the duplication using a named group:

re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(\g<title>\s)? (.+)
Ix
re.match("Mr Bond and Ms Monneypenny") # => #<MatchData "Mr Bond and Ms
.. Monneypenny" title:"Ms">
re.match("Samson and Delilah") # => #<MatchData "Samson and Delilah"
.. title:nil>

But this code also matches a line where the first name has a title and the second doesn’t:

re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(lg<title>\s)? (.+)
Ix
re.match("Mr Smith and Sally") # => #<MatchData "Mr Smith and Sally" title:"Mr">

We need to make the second test for a title mandatory if the first test matches. That’s where
the conditional subpatterns come in.

The syntax (?(n)subpattern) will apply the subpattern match only if a previous group number
n also matched. You can also test named groups using the syntaxes (?(<name>)subpattern) or
(?('name')subpattern).

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Advanced Regular Expressions ® 111

In our case, we want to apply a test for the second title if the first title is present. That first
title is matched by the group named title, so the condition group looks like (?<title>...):

re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(?(<title>)\g<title>\s) (.+)

Ix

re.match("Mr Smith and Sally") # => #<MatchData "Mr Smith and Sally" title:nil>

This didn't work—the match succeeded when we expected it to fail. That’s because the
regular expression applied backtracking. It matched the optional first name, the and, and then
was told to match a second title (because group 1 matched the first). There’s no second title,
so the match failed. But rather than stopping, the engine went back to explore alternatives.

It noticed that the first title was optional, and so it tried matching the whole pattern again,
this time skipping the title. It successfully matched Mr Smith using the (*?) group, and
matched Sally with the second name group. So we want to tell it never to backtrack over the
first name —once it has found a title there, it has to use it. (?>...) to the rescue:

re = %r{
~r>
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s

)
(?(<title>)\g<title>\s) (.+)
Ix
re.match("Mr Smith and Sally") # => nil
re.match("Mr Smith and Ms Sally") # => #<MatchData "Mr Smith and Ms Sally"
.. title:"Ms">

The match failed, as we expected, but when we add a title to Sally, it succeeds.
Let’s try this on our list:

DATA.each do |line|
re = %r{ ~(?>
(?7:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?) |s and |s
)
(?(<title>)\g<title>\s) (.+)

}x

if line =~ re

print "VALID: "
else

print "INVALID: "
end
puts line

end

END

Mr Jones and Sally

Mr Bond and Ms Moneypenny
Samson and Delilah

Dr Jekyll and himself

Ms Hinky Smith and Ms Jones
Dr Wood and Mrs Wood

Thelma and Louise

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 7. Regular Expressions ® 112

produces:

INVALID: Mr Jones and Sally

VALID: Mr Bond and Ms Moneypenny
VALID: Samson and Delilah

INVALID: Dr Jekyll and himself
VALID: Ms Hinky Smith and Ms Jones
VALID: Dr Wood and Mrs Wood

VALID: Thelma and Louise

Alternatives in Conditions

Being British, I have a national duty to emulate my compatriates on informercials and shout
“But Wait! There’s More!” Conditional subpatterns can also have an else clause.

(?(group_id) true-pattern | fail-pattern)

If the identified group was previously matched, the true pattern is applied. If it failed, the
fail pattern is applied.

Here’s a regular expression that deals with red or blue balls or buckets. The deal is that the
colors of the ball and bucket must be different.

re = %r{(?:(red) |blue) ball and (?(1)blue|red) bucket}

re.match("red ball and blue bucket") # => #<MatchData "red ball and blue bucket"
.. 1:"red">

re.match("blue ball and red bucket") # => #<MatchData "blue ball and red bucket"
.. 1:nil>

re.match("blue ball and blue bucket") # => nil

If the first group, the red alternative, matched, then the conditional subpattern is blue, oth-
erwise it is red.

Named Subroutines

There’s a trick that allows us to write subroutines inside regular expressions. Recall that we
can invoke a named group using \g<name>, and we define the group using (?<name>...).
Normally, the definition of the group is itself matched as part of executing the pattern.
However, if you add the suffix {0} to the group, it means “zero matches of this group,” so
the group is not executed when first encountered:

sentence = %r{

(?<subject> cat | dog | gerbil) {0}
(?<verb> eats | drinks| generates){0}
(?<object> water | bones | PDFs) {0}
(?<adjective> big | small | smelly){0}
(?7<opt_adj> (lg<adjective>|s)?){0}

Thel|s|g<opt_adj>|g<subject>|s|\g<verb>|s|g<opt_adj>|g<object>
Ix

md = sentence.match("The cat drinks water")
puts "The subject is #{md[:subject]} and the verb is #{md[:verb]}"

md = sentence.match("The big dog eats smelly bones")
puts "The last adjective in the second sentence is #{md[:adjective]}"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

7.5

\ze* 113

sentence =~ "The gerbil generates big PDFs"
puts "And the object in the last sentence is #{$~[:object]}"
produces:

The subject is cat and the verb is drinks
The last adjective in the second sentence is smelly
And the object in the last sentence is PDFs

Setting Options

We saw earlier that you can control the characters matched by \b, \d, \s, and \w (along with
their negations). To do that, we embedded a sequence such as (?u) in our pattern. That
sequence sets an option inside the regular expression engine.

We also saw at the start of this chapter that you can add one or more of the options i (case
insensitive), m (multiline), and x (allow spaces) to the end of a regular expression literal. You
can also set these options within the pattern itself. As you'd expect, they are set using (?i),
(?m), and (?x). You can also put a minus sign in front of these three options to disable them.

(?adimux) Turns on the corresponding option. If used inside a group, the effect is limited
to that group.

(?-imx) Turns off the i, m, or x option.

(?adimux:re) Turns on the option for re.

(?-imx:re) Turns off the option for re.

\z

So, that’s it. If you’ve made it this far, consider yourself a regular expression ninja. Get out
there and match some strings.

*Newin 2.0

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

[:alnum:]
[:alpha:]
[:ascii:]
[:blank:]
[:entrl:]

[:digit:]
[:graph:]
[:lower:]
[:print:]
[:punct:]

[:space:]
[:upper:]
[:xdigit:]
[:word:]

Chapter 7. Regular Expressions ® 114

POSIX Character Classes (Unicode)

Text in parentheses indicates the Unicode classes. These apply if the regular expression’s encoding is one of the
Unicode encodings.

Alphanumeric (Letter | Mark | Decimal_Number)
Uppercase or lowercase letter (Letter | Mark)
7-bit character including nonprinting

Blank and tab (+ Space_Separator)

Control characters—at least 0x00-0x1f, 0x7f (Control | Format | Unassigned | Private_Use |
Surrogate)

Digit (Decimal_Number)

Printable character excluding space (Unicode also excludes Control, Unassigned, and Surrogate)
Lowercase letter (Lowercase_Letter)

Any printable character (including space)

Printable character excluding space and alphanumeric (Connector_Punctuation | Dash_
Punctuation | Close_Punctuation | Final_Punctuation | Initial_Punctuation | Other_Punctuation
| Open_Punctuation)

Whitespace (same as \s)

Uppercase letter (Uppercase_Letter)

Hex digit (0-9, a—f, A-F)

Alphanumeric, underscore, and multibyte (Letter | Mark | Decimal_Number | Connector_
Punctuation)

Table 3—Posix character classes

\p{name}
\p{~name}
\P{name}

Character Properties
Matches character with named property
Matches any character except named property
Matches any character except named property

Property names.

Spaces, underscores, and case are ignored in property names.

All encodings Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper,
XDigit, Word, ASCII

EUC and SJIS Hiragana, Katakana

UTF-n Any, Assigned, C, Cc, Cf, Cn, Co, Cs, L, LI, Lm, Lo, Lt, Lu, M, Mc, Me, Mn,

N, Nd, NI, No, P, Pc, Pd, Pe, Pf, Pi, Po, Ps, S, Sc, Sk, Sm, So, Z, Z1, Zp, Zs,
Arabic, Armenian, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_
Aboriginal, Cherokee, Common, Coptic, Cypriot, Cyrillic, Deseret, Devana-
gari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han,
Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana,
Kharoshthi, Khmer, Lao, Latin, Limbu, Linear_B, Malayalam, Mongolian,
Myanmar, New_Tai_Lue, Ogham, Old_Italic, Old_Persian, Oriya, Osmanya,
Runic, Shavian, Sinhala, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le,
Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi

Table 4—Unicode character properties

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

8.1

CHAPTER 8

More About Methods

So far in this book, we’ve been defining and using methods without much thought. Now
it’s time to get into the details.

Defining a Method

As we’ve seen, a method is defined using the keyword def. Method names should begin with
a lowercase letter or underscore," followed by letters, digits, and underscores.

A method name may end with one of ?, !, or =. Methods that return a boolean result (so-
called predicate methods) are often named with a trailing ?:

l.even? # => false
2.even? # => true
l.instance_of?(Fixnum) # => true

Methods that are “dangerous,” or that modify their receiver, may be named with a trailing
exclamation mark, !. These are sometimes called bang methods. For instance, class String pro-
vides both chop and chop! methods. The first returns a modified string; the second modifies
the receiver in place.

Methods that can appear on the left side of an assignment (a feature we discussed back in
the chapter on classes on page 34) end with an equal sign (=).

?, !, and = are the only “weird” characters allowed as method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some
parameters. These are simply a list of local variable names in parentheses. (The parentheses
around a method’s arguments are optional; our convention is to use them when a method
has arguments and omit them when it doesn’t.)

def my new method(argl, arg2, arg3) # 3 arguments
Code for the method would go here
end

1. You won't get an immediate error if you start a method name with an uppercase letter, but when Ruby

sees you calling the method, it might guess that it is a constant, not a method invocation, and as a result
it may parse the call incorrectly. By convention, methods names starting with an uppercase letter are
used for type conversion. The Integer method, for example, converts its parameter to an integer.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 8. More About Methods * 116

def my other new method # No arguments
Code for the method would go here
end

Ruby lets you specify default values for a method’s arguments —values that will be used if
the caller doesn’t pass them explicitly. You do this using an equal sign (=) followed by a
Ruby expression. That expression can include references to previous arguments in the list:

def cool dude(argl="Miles", arg2="Coltrane", arg3="Roach")
"#{argl}, #{arg2}, #{arg3}."

end

cool dude # => "Miles, Coltrane, Roach."
cool dude("Bart") # => "Bart, Coltrane, Roach."
cool dude("Bart", "Elwood") # => "Bart, Elwood, Roach."
cool dude("Bart", "Elwood", "Linus") # => "Bart, Elwood, Linus."

Here’s an example where the default argument references a previous argument:

def surround(word, pad width=word.length/2)
"[" * pad_width + word + "]" * pad width
end

surround("elephant") # => "[[[[elephant]]]]"
surround("fox") # => "[fox]"
surround("fox", 10) # => "[[[[[[[[[[fox]]]]]]]]]]"

The body of a method contains normal Ruby expressions. The return value of a method is
the value of the last expression executed or the argument of an explicit return expression.

Variable-Length Argument Lists

But what if you want to pass in a variable number of arguments or want to capture multiple
arguments into a single parameter? Placing an asterisk before the name of the parameter
after the “normal” parameters lets you do just that. This is sometimes called splatting an
argument (presumably because the asterisk looks somewhat like a bug after hitting the
windscreen of a fast-moving car).

def varargs(argl, *rest)
"argl=#{argl}. rest=#{rest.inspect}"

end

varargs("one") # => argl=one. rest=[]
varargs("one", "two") # => argl=one. rest=["two"]

varargs "one", "two", "three" # => argl=one. rest=["two", "three"]

In this example, the first argument is assigned to the first method parameter as usual.
However, the next parameter is prefixed with an asterisk, so all the remaining arguments
are bundled into a new Array, which is then assigned to that parameter.

Folks sometimes use a splat to specify arguments that are not used by the method but that
are perhaps used by the corresponding method in a superclass. (Note that in this example
we call super with no parameters. This is a special case that means “invoke this method in
the superclass, passing it all the parameters that were given to the original method.”)

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Defining a Method * 117

class Child < Parent
def do something(*not used)
our processing
super
end
end

In this case, you can also leave off the name of the parameter and just write an asterisk:

class Child < Parent
def do_something(*)
our processing
super
end
end

You can put the splat argument anywhere in a method’s parameter list, allowing you to
write this:

def split apart(first, *splat, last)
puts "First: #{first.inspect}, splat: #{splat.inspect}, " +
"last: #{last.inspect}"
end

split_apart(1,2)

split apart(1,2,3)

split apart(1,2,3,4)

produces:

First: 1, splat: [], last: 2
First: 1, splat: [2], last: 3
First: 1, splat: [2, 3], last: 4

If you cared only about the first and last parameters, you could define this method using
this:

def split _apart(first, *, last)

You can have only one splat argument in a method —if you had two, it would be ambiguous.
You also can’t put arguments with default values after the splat argument. In all cases, the
splat argument receives the values left over after assigning to the regular arguments.

Methods and Blocks

As we discussed in the section on blocks and iterators on page 52, when a method is called
it may be associated with a block. Normally, you call the block from within the method using
yield:

def double(pl)
yield(pl*2)
end

double(3) {|val] "I got #{val}" } # => "I got 6"
double("tom") {|val| "Then I got #{val}" } # => "Then I got tomtom"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

8.2

Chapter 8. More About Methods * 118

However, if the last parameter in a method definition is prefixed with an ampersand, any
associated block is converted to a Proc object, and that object is assigned to the parameter.
This allows you to store the block for use later.

class TaxCalculator
def initialize(name, &block)
@name, @block = name, block
end
def get tax(amount)
"#@name on #{amount} = #{ @block.call(amount) }"
end
end

tc = TaxCalculator.new("Sales tax") {|amt| amt * 0.075 }

tc.get tax(100) # => "Sales tax on 100
tc.get tax(250) # => "Sales tax on 250

Calling a Method

You call a method by optionally specifying a receiver, giving the name of the method, and
optionally passing some parameters and an optional block. Here’s a code fragment that
shows us calling a method with a receiver, a parameter, and a block:

7.5"
18.75"

connection.download mp3("jitterbug") {|p| show progress(p) }

In this example, the object connection is the receiver, download_mp3 is the name of the method,
the string "jitterbug" is the parameter, and the stuff between the braces is the associated block.
During this method call, Ruby first sets self to the receiver and then invokes the method in
that object. For class and module methods, the receiver will be the class or module name.

File.size("testfile") # => 66
Math.sin(Math::PI/4) # => 0.7071067811865475

If you omit the receiver, it defaults to self, the current object.

class InvoiceWriter
def initialize(order)
@order = order
end
def write on(output)
write header on(output) # called on current object.
write_body_on(output) # self is not changed, as
write totals_on(output) # there is no receiver
end
def write header on(output)
...
end
def write body on(output)
...
end
def write totals_on(output)
...
end
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Calling a Method * 119

This defaulting mechanism is how Ruby implements private methods. Private methods may
not be called with a receiver, so they must be methods available in the current object. In the
previous example, we’'d probably want to make the helper methods private, because they
shouldn’t be called from outside the InvoiceWriter class:

class InvoiceWriter

def initialize(order)
@order = order

end

def write on(output)
write header on(output)
write body on(output)
write totals on(output)

end

private

def write header on(output)
...

end

def write body on(output)
...

end

def write totals on(output)
...

end

end

Passing Parameters to a Method

Any parameters follow the method name. If no ambiguity exists, you can omit the parentheses
around the argument list when calling a method.” However, except in the simplest cases we
don’t recommend this —some subtle problems can trip you up.’ Our rule is simple: if you
have any doubt, use parentheses.

for some suitable value in obj:
a = obj.hash # Same as
a obj.hash() # this.

obj.some method "Argl", arg2, arg3 # Same thing as
obj.some method("Argl", arg2, arg3) # with parentheses.

Older Ruby versions compounded the problem by allowing you to put spaces between the
method name and the opening parenthesis. This made it hard to parse: is the parenthesis
the start of the parameters or the start of an expression? As of Ruby 1.8, you get a warning
if you put a space between a method name and an open parenthesis.

Method Return Values

Every method you call returns a value (although there’s no rule that says you have to use
that value). The value of a method is the value of the last statement executed by the method:

2. Other Ruby documentation sometimes calls these method calls without parentheses commands.
3. Inparticular, you must use parentheses on a method call that is itself a parameter to another method
call (unless it is the last parameter).

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 8. More About Methods ¢ 120

def meth one
"one"
end
meth one # => "one"

def meth two(arg)
case
when arg > 0 then "positive"
when arg < 0 then "negative"
else "zero"
end
end
meth two(23) # => "positive"
meth two(0) # => "zero"

Ruby has a return statement, which exits from the currently executing method. The value of
areturn is the value of its argument(s). It is idiomatic Ruby to omit the return if it isn’t needed,
as shown by the previous two examples.

This next example uses return to exit from a loop inside the method:

def meth_three
100.times do |num]|
square = num*num
return num, square if square > 1000
end
end
meth three # => [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns them
in an array. You can use parallel assignment to collect this return value:

num, square = meth_three
num # => 32
square # => 1024

Splat! Expanding Collections in Method Calls

We’ve seen that if you prefix the name of a parameter with an asterisk, multiple arguments
in the call to the method will be passed as an array. Well, the same thing works in reverse.

When you call a method, you can convert any collection or enumerable object into its con-
stituent elements and pass those elements as individual parameters to the method. Do this
by prefixing array arguments with an asterisk:

def five(a, b, ¢, d, e)
"I was passed #{a} #{b} #{c} #{d} #{e}"
end

five(1l, 2, 3, 4, 5)
five(1, 2, 3, *['a', 'b']
five(*['a', 'b'], 1, 2, 3
five(*(10..14))
five(*[1,2], 3, *(4..5))

=> "I was passed 1 2 3 4 5"
) # => "I was passed 1 2 3 a b"
) # => "I was passed a b 1 2 3"
=> "I was passed 10 11 12 13 14"
=> "I was passed 1 2 3 4 5"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Calling a Method * 121

As of Ruby 1.9, splat arguments can appear anywhere in the parameter list, and you can
intermix splat and regular arguments.

Making Blocks More Dynamic

We’ve already seen how to associate a block with a method call:

collection.each do |[member|
...
end

Normally, this is perfectly good enough —you associate a fixed block of code with a method
in the same way you’d have a chunk of code after an if or while statement. But sometimes
you’d like to be more flexible. Maybe we're teaching math skills. The student could ask for
an n-plus table or an n-times table. If the student asked for a 2-times table, we’'d output 2, 4,
6, 8, and so on. (This code does not check its inputs for errors.)

print "(t)imes or (p)lus: "
operator = gets

print "number: "

number = Integer(gets)

if operator =~ /"t/

puts((1..10).collect {|n| n*number }.join(", "))
else

puts((1..10).collect {|n| n+number }.join(", "))
end

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if statement. It
would be nice if we could factor out the block that does the calculation:

print "(t)imes or (p)lus: "
operator = gets
print "number: "
number = Integer(gets)
if operator =~ /~t/
calc = lambda {|n| n*number }
else
calc = lambda {|n| n+number }
end
puts((1..10).collect(&calc).join(", "))

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it is a Proc
object. It removes it from the parameter list, converts the Proc object into a block, and associates
it with the method.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

*Newin 2.0i

Chapter 8. More About Methods * 122

Hash and Keyword Arguments

People commonly use hashes as a way of passing optional named arguments to a method.
For example, we could consider adding a search facility to an MP3 playlist:

class SonglList
def search(field, params)
...
end
end

list = SonglList.new
list.search(:titles, { genre: "jazz", duration less than: 270 })

The first parameter tells the search what to return. The second parameter is a hash literal of
search parameters. (Note how we used symbols as the keys for this options hash. This has
become idiomatic in Ruby libraries and frameworks.) The use of a hash means we can sim-
ulate keywords: look for songs with a genre of “jazz” and a duration less than 4.5 minutes.

However, this approach is slightly clunky, and that set of braces could easily be mistaken
for a block associated with the method. So, Ruby has a shortcut. You can place key => value
pairs in an argument list, as long as they follow any normal arguments and precede any
splat and block arguments. All these pairs will be collected into a single hash and passed as
one argument to the method. No braces are needed.

list.search(:titles, genre: "jazz", duration less than: 270)

Keyword Argument Lists

Let’s look inside our search method. It gets passed a field name and an options hash. Maybe
we want to default the duration to 120 seconds, and validate that no invalid options are
passed. Pre Ruby 2.0, the code would look something like:

def search(field, options)

options = { duration: 120 }.merge(options)

if options.has key?(:duration)
duration = options[:duration]
options.delete(:duration)

end

if options.has key?(:genre)
genre = options[:genre]
options.delete(:genre)

end
fail "Invalid options: #{options.keys.join(', ')}" unless options.empty?
rest of method

end

Do this enough times, and you end up writting a helper function to validate and extract hash
parameters to methods.

Ruby 2 to the rescue. You can now define keyword arguments to your methods. You still
pass in the hash, but Ruby now matches the hash contents to your keyword argument list.
It also validates that you don’t pass in any unknown arguments.

def search(field, genre: nil, duration: 120)
p [field, genre, duration]
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Calling a Method * 123

search(:title)

search(:title, duration: 432)

search(:title, duration: 432, genre: "jazz")
produces:

[:title, nil, 120]

[:title, nil, 432]

[:title, "jazz", 432]

Pass in an invalid option, and Ruby complains:

def search(field, genre: nil, duration: 120)
p [field, genre, duration]
end

search(:title, duraton: 432)

produces:

prog.rb:5:in “<main>': unknown keyword: duraton (ArgumentError)

You can collect these extra hash arguments as a hash parameter —just prefix one element of
your argument list with two asterisks (a double splat).

def search(field, genre: nil, duration: 120, **rest)
p [field, genre, duration, rest]
end

search(:title, duration: 432, stars: 3, genre: "jazz", tempo: "slow")

produces:

[:title, "jazz", 432, {:stars=>3, :tempo=>"slow"}]
And, just to prove that all we're passing in is a hash, here’s the same calling sequence:

def search(field, genre: nil, duration: 120, **rest)
p [field, genre, duration, rest]
end

options = { duration: 432, stars: 3, genre: "jazz", tempo: "slow" }
search(:title, options)
produces:

[:title, "jazz", 432, {:stars=>3, :tempo=>"slow"}]

A well-written Ruby program will typically contain many methods, each quite small, so it’s
worth getting familiar with the options available when defining and using them. At some
point you'll probably want to read Method Arguments, on page 324 to see exactly how argu-
ments in a method call get mapped to the method’s formal parameters when you have
combinations of default parameters and splat parameters.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 9

Expressions

So far, we’ve been fairly cavalier in our use of expressions in Ruby. After all, a = b + c is
pretty standard stuff. You could write a whole heap of Ruby code without reading any of
this chapter.

But it wouldn’t be as much fun ;-).

One of the first differences with Ruby is that anything that can reasonably return a value
does: just about everything is an expression. What does this mean in practice?

Some obvious things include the ability to chain statements together:

b=c=0 #=>0

a C
[3, 1, 7, 0].sort.reverse # => [7, 3, 1, 0]

w 1

Perhaps less obvious, things that are normally statements in C or Java are expressions in
Ruby. For example, the if and case statements both return the value of the last expression
executed:

song_type = if song.mp3_type == MP3::Jazz
if song.written < Date.new(1935, 1, 1)
Song::TradJazz

else
Song::Jazz
end
else
Song::0ther
end

rating = case votes cast
when 0...10 then Rating::SkipThisOne
when 10...50 then Rating::CouldDoBetter
else Rating::Rave
end

We'll talk more about if and case later on page 135.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.1

Chapter 9. Expressions ® 126

Operator Expressions

Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A complete

list of the operators, and their precedences, is given in Table 13, Ruby operators (high to low
precedence), on page 318.

In Ruby, many operators are implemented as method calls. For example, when you write
a*b+c, you're actually asking the object referenced by a to execute the method *, passing in
the parameter b. You then ask the object that results from that calculation to execute the +
method, passing c as a parameter. This is the same as writing the following (perfectly valid)
Ruby:

a, b, c=1,2,3
a*b+c # =>5
(a.*(b)).+(c) # == 5

Because everything is an object and because you can redefine instance methods, you can
always redefine basic arithmetic if you don’t like the answers you're getting:

class Fixnum
alias old plus + # We can reference the original '+' as 'old plus'

def +(other) # Redefine addition of Fixnums. This is a BAD IDEA!
old_plus(other).succ
end
end
1+ 2 # =>4
a=3

a +=4 # =>8
a+a+a#=>26

More useful is that classes you write can participate in operator expressions just as if they
were built-in objects. For example, the left shift operator, <<, is often used to mean append
to receiver. Arrays support this:

a=1[1, 2, 3]
a<<4 # =>[1, 2, 3, 4]

You can add similar support to your classes:

class ScoreKeeper
def initialize
@total score = @count = 0
end
def <<(score)
@total score += score
@count += 1
self
end
def average
fail "No scores" if @count.zero?
Float(@total score) / @count
end
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.2

Miscellaneous Expressions ® 127

scores = ScoreKeeper.new

scores << 10 << 20 << 40

puts "Average = #{scores.average}"
produces:

Average = 23.333333333333332

Note that there’s a subtlety in this code—the << method explicitly returns self. It does this
to allow the method chaining in the line scores << 10 << 20 << 40. Because each call to <<
returns the scores object, you can then call << again, passing in a new score.

As well as the obvious operators, such as +, *, and <<, indexing using square brackets is also
implemented as a method call. When you write this:

some obj[1,2,3]

you're actually calling a method named [] on some_obj, passing it three parameters. You'd
define this method using this:

class SomeClass
def [1(pl, p2, p3)
...
end
end

Similarly, assignment to an element is implemented using the []= method. This method
receives each object passed as an index as its first n parameters and the value of the assignment
as its last parameter:

class SomeClass
def []=(*params)
value = params.pop

puts "Indexed with #{params.join(', ')}"
puts "value = #{value.inspect}"
end

end

s = SomeClass.new

s[l] = 2

s['cat', 'dog']l = 'enemies'
produces:

Indexed with 1

value = 2

Indexed with cat, dog
value = "enemies"

Miscellaneous Expressions

As well as the obvious operator expressions and method calls and the (perhaps) less obvious
statement expressions (such as if and case), Ruby has a few more things that you can use in
expressions.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.3

Chapter 9. Expressions * 128

Command Expansion

If you enclose a string in backquotes (sometimes called backticks) or use the delimited form
prefixed by %x, it will (by default) be executed as a command by your underlying operating
system. The value of the expression is the standard output of that command. Newlines will
not be stripped, so itis likely that the value you get back will have a trailing return or linefeed
character.

‘date” # => "Mon May 27 12:30:56 (DT 2013\n"
‘s .split[34] # => "newfile"
%x{echo "hello there"} # => "hello there\n"

You can use expression expansion and all the usual escape sequences in the command string:

for i in 0..3
status = “dbmanager status id=#{i}"
...

end

The exit status of the command is available in the global variable $?.

Redefining Backquotes

In the description of the command output expression, we said that the string in backquotes
would “by default” be executed as a command. In fact, the string is passed to the method
called Object#" (a single backquote). If you want, you can override this. This example uses
$?, which contains the status of the last external process run:

alias old backquote °

def " (cmd)
result = old backquote(cmd)
if $?2 1= 0
puts "*** Command #{cmd} failed: status = #{$?.exitstatus}"
end
result
end

print "1s -1 /etc/passwd’
print “1s -1 /etc/wibble’

produces:

-rw-r--r-- 1 root wheel 5086 Jul 20 2011 /etc/passwd
ls: /etc/wibble: No such file or directory
*** Command 1s -1 /etc/wibble failed: status =1

Assignment

Just about every example we’ve given so far in this book has featured assignment. Perhaps
it's about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the [value) to refer to
the value on the right (the rvalue). It then returns that rvalue as the result of the assignment
expression. This means you can chain assignments, and you can perform assignments in
some unexpected places:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Assignment ® 129

a=b=1+2+3
a # =>6
b #=>6
a=(b=1+2)+3
a # =>6
b # => 3

File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference to a variable
or constant. This form of assignment is hardwired into the language:

instrument = "piano"
MIDDLE A = 440

The second form of assignment involves having an object attribute or element reference on
the left side. These forms are special, because they are implemented by calling methods in
the Ivalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method name
ending in an equals sign. This method receives as its parameter the assignment’s rvalue.
We’ve also seen that you can define [] as a method:

class ProjectList
def initialize
@projects = []
end
def projects=(list)
@projects = list.map(&:upcase) # store list of names in uppercase
end
def [](offset)
@projects[offset]
end
end

list = ProjectList.new

list.projects = %w{ strip sand prime sand paint sand paint rub paint }
list[3] # => "SAND"

list[4] # => "PAINT"

As this example shows, these attribute-setting methods don’t have to correspond with
internal instance variables, and you don’t need an attribute reader for every attribute writer
(or vice versa).

In older Rubys, the result of the assignment was the value returned by the attribute-setting
method. As of Ruby 1.8, the value of the assignment is always the value of the parameter;
the return value of the method is discarded. In the code that follows, older versions of Ruby
would set result to 99. Now result will be set to 2.

class Test
def val=(val)
@val = val
return 99
end
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 9. Expressions ® 130

t = Test.new
result = (t.val = 2)
result # => 2

Parallel Assignment

During your first week in a programming course (or the second semester if it was a party
school), you may have had to write code to swap the values in two variables:

int a = 1; # C, or Java, or ...
int b = 2;

int temp;

temp = a;

a=b;

b = temp;

You can do this much more cleanly in Ruby:

a, b=1, 2 # a=1, b=2
a, b=>b, a # b=2, a=1

Ruby lets you have a comma-separated list of rvalues (the things on the right of the assign-
ment). Once Ruby sees more than one rvalue in an assignment, the rules of parallel assignment
come into play. What follows is a description at the logical level: what happens inside the
interpreter is somewhat hairier. Users of older versions of Ruby should note that these rules
have changed in Ruby 1.9.

First, all the rvalues are evaluated, left to right, and collected into an array (unless they are
already an array). This array will be the eventual value returned by the overall assignment.

Next, the left side (lhs) is inspected. If it contains a single element, the array is assigned to
that element.

a=1234 # a=[1,2, 3, 4]

b=[1,23,4 # b=[1,23,4]

If the 1hs contains a comma, Ruby matches values on the rhs against successive elements on
the lhs. Excess elements are discarded.

a,b=1234 # a=1, b=2
¢.=1234 # c=1

Splats and Assignment

If Ruby sees any splats on the right side of an assignment (that is, rvalues preceded by an
asterisk), each will be expanded inline into its constituent values during the evaluation of
the rvalues and before the assignment to lvalues starts:

a,b,cde=%1.2),3 *4,5] # a=1, b=2, c=3, d=4, e=5

Exactly one lvalue may be a splat. This makes it greedy —it will end up being an array, and
that array will contain as many of the corresponding rvalues as possible. So, if the splat is
the last Ivalue, it will soak up any rvalues that are left after assigning to previous lvalues:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Assignment ¢ 131

a,*=123 # a=1, b=[2, 3]
a,*=1 # a=1, b=[]
If the splat is not the last lvalue, then Ruby ensures that the lvalues that follow it will all

receive values from rvalues at the end of the right side of the assignment—the splat lvalue
will soak up only enough rvalues to leave one for each of the remaining lvalues.

*a,b=1,2234 # a=[1, 2, 3], b=4
c,*d,e=1,2234 # c=1, d=[2, 3], e=4
f,*g,h,i,j=1,2,3,4 # f=1, g=[], h=2, i=3, j=4

As with method parameters, you can use a raw asterisk to ignore some rvalues:

first, %, last = 1,2,3,4,5,6 # first=1, last=6

Nested Assignments

The left side of an assignment may contain a parenthesized list of terms. Ruby treats these
terms as if they were a nested assignment statement. It extracts the corresponding rvalue,
assigning it to the parenthesized terms, before continuing with the higher-level assignment.

a, (b,c)d=1234 # a=1, b=2, c=nil, d=3
a, (b, c),d=11,234] a=1, b=2, c=nil, d=3
a, (b,c)d=11[23]4 a=1, b=2, ¢=3, d=4
a, (a=1, b=2, ¢=3, d=5
a, (

a=1, b=2, c=[3,4], d=5

,(b,c),d=1,23,4]5
, (b*c), d =1,[2,3,4],5

Other Forms of Assignment

In common with other languages, Ruby has a syntactic shortcut: a = a + 2 may be written as
a += 2. The second form is converted internally to the first. This means that operators you
have defined as methods in your own classes work as you'd expect:

class Bowdlerize
def initialize(string)
@value = string.gsub(/[aeiou]/, '*')
end
def +(other)
Bowdlerize.new(self.to s + other.to_ s)

end
def to s
@value
end
end
= Bowdlerize.new("damn ") # => d*mn
a += "shame" # => d*mn sh*m*

Something you won't find in Ruby are the autoincrement (++) and autodecrement (-) operators
of C and Java. Use the += and -= forms instead.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.4

Chapter 9. Expressions ® 132

Conditional Execution

Ruby has several different mechanisms for conditional execution of code; most of them
should feel familiar, and many have some neat twists. Before we get into them, though, we
need to spend a short time looking at boolean expressions.

Boolean Expressions

Ruby has a simple definition of truth. Any value that is not nil or the constant false is true—
"cat", 99, 0, and :a_song are all considered true.

In this book, when we want to talk about a general true or false value, we use regular Roman
type: true and false. When we want to refer to the actual constants, we write true and false.

The fact that nil is considered to be false is convenient. For example, 10#gets, which returns
the next line from a file, returns nil at the end of file, enabling you to write loops such as this:

while line = gets
process line
end

However, C, C++, and Perl programmers sometimes fall into a trap. The number zero is not
interpreted as a false value. Neither is a zero-length string. This can be a tough habit to break.

And, Or, and Not

Ruby supports all the standard boolean operators. Both the keyword and and the operator
&& return their first argument if it is false. Otherwise, they evaluate and return their second
argument (this is sometimes known as shortcircuit evaluation). The only difference in the
two forms is precedence (and binds lower than &&).

nil && 99 # => nil
false && 99 # => false
"cat" && 99 # => 99

Thus, && and and both return a true value only if both of their arguments are true, as
expected.

Similarly, both or and || return their first argument unless it is false, in which case they
evaluate and return their second argument.

nil || 99 # => 99
false || 99 # => 99
"cat" || 99 # => "cat"

As with and, the only difference between or and || is their precedence. To make life interesting,
and and or have the same precedence, but && has a higher precedence than ||.

A common idiom is to use ||= to assign a value to a variable only if that variable isn't already
set:

var ||= "default value"

This is almost, but not quite, the same as var = var || "default value". It differs in that no
assignment is made at all if the variable is already set. In pseudocode, this might be written
as var = "default value" unless var or as var || var = "default value".

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Conditional Execution ® 133

not and ! return the opposite of their operand (false if the operand is true and true if the
operand is false). And, yes, not and ! differ only in precedence.

All these precedence rules are summarized in Table 13, Ruby operators (high to low precedence),
on page 318.

defined?

The defined? operator returns nil if its argument (which can be an arbitrary expression) is not
defined; otherwise, it returns a description of that argument. If the argument is yield, defined?
returns the string “yield” if a code block is associated with the current context.

defined? 1 # => "expression"
defined? dummy # => nil

defined? printf # => "method"

defined? String # => "constant"
defined? $ # => "global-variable"
defined? Math::PI # => "constant"
defined? a = 1 # => "assignment"
defined? 42.abs # => "method"

defined? nil # => "nil"

Comparing Objects

In addition to the boolean operators, Ruby objects support comparison using the methods
==, ===, <=>, =~, eql?, and equal? (see Table 5, Common comparison operators, on page 134).
All but <=> are defined in class Object but are often overridden by descendants to provide
appropriate semantics. For example, class Array redefines == so that two array objects are
equal if they have the same number of elements and the corresponding elements are equal.

Both == and =~ have negated forms, != and !~. Ruby first looks for methods called != or !~,
calling them if found. If not, it will then invoke either == or =~, negating the result.

In the following example, Ruby calls the == method to perform both comparisons:

class T
def ==(other)
puts "Comparing self == #{other}"
other == "value"
end
end

t = T.new
p(t == "value")
p(t '= "value")

produces:

Comparing self == value
true

Comparing self == value
false

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 9. Expressions * 134

Operator Meaning
== Test for equal value.
=== Used to compare each of the items with the target in the when clause of a case
statement.
<=> General comparison operator. Returns -1, 0, or +1, depending on whether its
receiver is less than, equal to, or greater than its argument.

<, <=,>=,> Comparison operators for less than, less than or equal, greater than or equal,
and greater than.

=~ Regular expression pattern match.

eql? True if the receiver and argument have both the same type and equal values.
1 == 1.0 returns true, but 1.eql?(1.0) is false.

equal? True if the receiver and argument have the same object ID.

Table 5—Common comparison operators

If instead we explicitly define !=, Ruby calls it:

class T
def ==(other)
puts "Comparing self == #{other}"
other == "value"
end
def !=(other)
puts "Comparing self != #{other}"
other != "value"
end
end

t = T.new

p(t == "value")

p(t '= "value")

produces:

Comparing self == value
true

Comparing self != value
false

You can use a Ruby range as a boolean expression. A range such as expl..exp2 will evaluate
as false until expl becomes true. The range will then evaluate as true until exp2 becomes true.
Once this happens, the range resets, ready to fire again. We show some examples of this
later on page 138.

Prior to Ruby 1.8, you could use a bare regular expression as a boolean expression. This is
now deprecated. You can still use the ~ operator (described in the reference section on page
661) to match $_ against a pattern, but this will probably also disappear in the future.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Conditional Execution ® 135

if and unless Expressions

An if expression in Ruby is pretty similar to if statements in other languages:

if artist == "Gillespie" then
handle = "Dizzy"

elsif artist == "Parker" then
handle = "Bird"

else
handle = "unknown"

end

The then keyword is optional if you lay out your statements on multiple lines:

if artist == "Gillespie"
handle = "Dizzy"

elsif artist == "Parker"
handle = "Bird"

else
handle = "unknown"

end

However, if you want to lay out your code more tightly, you must separate the boolean
expression from the following statements with the then keyword:'

if artist == "Gillespie" then handle = "Dizzy"
elsif artist == "Parker" then handle = "Bird"
else handle = "unknown"

end

You can have zero or more elsif clauses and an optional else clause. And notice that there’s
no e in the middle of elsif.

As we’ve said before, an if statement is an expression—it returns a value. You don't have to
use the value of an if statement, but it can come in handy:

handle = if artist == "Gillespie"
"Dizzy"
elsif artist == "Parker"
"Bird"
else
"unknown"
end

Ruby also has a negated form of the if statement:

unless duration > 180
listen_intently
end

The unless statement does support else, but most people seem to agree that it’s clearer to
switch to an if statement in these cases.

1. Ruby 1.8 allowed you to use a colon character in place of the then keyword. This is no longer supported.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.5

Chapter 9. Expressions ® 136

Finally, for the C fans out there, Ruby also supports the C-style conditional expression:

cost = duration > 180 ? 0.35 : 0.25

A conditional expression returns the value of the expression either before or after the colon,
depending on whether the boolean expression before the question mark is true or false. In
the previous example, if the duration is greater than three minutes, the expression returns
0.35. For shorter durations, it returns 0.25. The result is then assigned to cost.

if and unless Modifiers

Ruby shares a neat feature with Perl. Statement modifiers let you tack conditional statements
onto the end of a normal statement:

mon, day, year = $1, $2, $3 if date =~ /(\d\d)-(\d\d)-(\d\d)/
puts "a = #{a}" if $DEBUG
print total unless total.zero?

For an if modifier, the preceding expression will be evaluated only if the condition is true.
unless works the other way around:

File.foreach("/etc/passwd") do |line|

next if line =~ /"#/ # Skip comments
parse(line) unless line =~ /~$/ # Don't parse empty lines
end

Because if itself is an expression, you can get really obscure with statements such as this:

if artist == "John Coltrane"
artist = "'Trane"
end unless use nicknames == "no"

This path leads to the gates of madness.

case Expressions

The Ruby case expression is a powerful beast: a multiway if on steroids. And just to make it
even more powerful, it comes in two flavors.

The first form is fairly close to a series of if statements; it lets you list a series of conditions
and execute a statement corresponding to the first one that’s true:

case

when song.name == "Misty"
puts "Not again!"

when song.duration > 120
puts "Too long!"

when Time.now.hour > 21
puts "It's too late"

else
song.play

end

The second form of the case statement is probably more common. You specify a target at the
top of the case statement, and each when clause lists one or more comparisons to be tested
against that target:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

case Expressions ® 137

case command

when "debug"
dump_debug _info
dump_symbols

when /p\s+(lw+)/
dump variable($1)

when "quit", "exit"

exit
else

print "Illegal command: #{command}"
end

As with if, case returns the value of the last expression executed, and you can use a then
keyword if the expression is on the same line as the condition:”

kind = case year
when 1850..1889 then "Blues"
when 1890..1909 then "Ragtime"
when 1910..1929 then "New Orleans Jazz"
when 1930..1939 then "Swing"
else "Jazz"
end

case operates by comparing the target (the expression after the keyword case) with each of
the comparison expressions after the when keywords. This test is done using comparison ===
target. As long as a class defines meaningful semantics for === (and all the built-in classes
do), objects of that class can be used in case expressions.

For example, regular expressions define === as a simple pattern match:

case line

when /title=(.*)/
puts "Title is #$1"

when /track=(.*)/
puts "Track is #$1"

end

Ruby classes are instances of class Class. The === operator is defined in Class to test whether
the argument is an instance of the receiver or one of its superclasses. So (abandoning the
benefits of polymorphism and bringing the gods of refactoring down around your ears),
you can test the class of objects:

case shape
when Square, Rectangle
...
when Circle
...
when Triangle
...
else
...
end

2. Ruby 1.8 lets you use a colon in place of the then keyword. Ruby 1.9 does not support this.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.6

Chapter 9. Expressions ® 138

Loops
Don't tell anyone, but Ruby has pretty primitive built-in looping constructs.

The while loop executes its body zero or more times as long as its condition is true. For
example, this common idiom reads until the input is exhausted:

while line = gets
...
end

The until loop is the opposite; it executes the body until the condition becomes true:

until play list.duration > 60
play list.add(song list.pop)
end

As with if and unless, you can use both of the loops as statement modifiers:

a=1

a *= 2 while a < 100
a # => 128

a -= 10 until a < 100
a # => 98

Back in the section on boolean expressions on page 134, we said that a range can be used as
a kind of flip-flop, returning true when some event happens and then staying true until a
second event occurs. This facility is normally used within loops. In the example that follows,
we read a text file containing the first ten ordinal numbers (“first,” “second,” and so on) but
print only the lines starting with the one that matches “third” and ending with the one that
matches “fifth”:

file = File.open("ordinal")
while line = file.gets
puts(line) if line =~ /third/ .. line =~ /fifth/
end
produces:
third

fourth
fifth

You may find folks who come from Perl writing the previous example slightly differently:

file = File.open("ordinal")
while file.gets

print if ~/third/ .. ~/fifth/
end

produces:

third
fourth
fifth

This uses some behind-the-scenes magic behavior: gets assigns the last line read to the
global variable $_, the ~ operator does a regular expression match against $_, and print with

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Loops ¢ 139

no arguments prints $_. This kind of code is falling out of fashion in the Ruby community
and may end up being removed from the language.

The start and end of a range used in a boolean expression can themselves be expressions.
These are evaluated each time the overall boolean expression is evaluated. For example, the
following code uses the fact that the variable $. contains the current input line number to
display line numbers 1 through 3 as well as those between a match of /eig/ and /nin/:

File.foreach("ordinal") do |line]
if (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)
print line
end
end

produces:

first
second
third
eighth
ninth

You'll come across a wrinkle when you use while and until as statement modifiers. If the
statement they are modifying is a begin...end block, the code in the block will always execute
at least one time, regardless of the value of the boolean expression:

print "Hello\n" while false
begin

print "Goodbye\n"
end while false

produces:

Goodbye

Iterators

If you read the beginning of the previous section, you may have been discouraged. “Ruby
has pretty primitive built-in looping constructs,” it said. Don’t despair, gentle reader, for we
have good news. Ruby doesn’t need any sophisticated built-in loops, because all the fun
stuff is implemented using Ruby iterators.

For example, Ruby doesn’t have a for loop—at least not the kind that iterates over a range
of numbers. Instead, Ruby uses methods defined in various built-in classes to provide
equivalent, but less error-prone, functionality.

Let’s look at some examples:

3.times do
print "Ho! "

end

produces:

Ho! Ho! Ho!

It’s easy to avoid fence-post and off-by-one errors; this loop will execute three times, period.
In addition to times, integers can loop over specific ranges by calling downto and upto, and all
numbers can loop using step. For instance, a traditional “for” loop that runs from 0 to 9
(something like for(i=0; i < 10; i++)) is written as follows:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 9. Expressions ® 140

0.upto(9) do |x]
print x, " "
end

produces:
0123456789
A loop from 0 to 12 by 3 can be written as follows:

0.step(12, 3) {|x| print x, " " }
produces:

036912

Similarly, iterating over arrays and other containers is easy if you use their each method:

[1, 1, 2, 3, 5].each {]|val| print val, " " }
produces:
11235

And once a class supports each, the additional methods in the Enumerable module become
available. (We talked about this back in the Modules chapter on page 77, and we document
it fully in Enumerable, on page 466.) For example, the File class provides an each method, which
returns each line of a file in turn. Using the grep method in Enumerable, we could iterate over
only those lines that end with a d:

File.open("ordinal").grep(/d$/) do |line|
puts line

end

produces:

second
third

Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator called
loop:

loop do
block ...
end

The loop iterator calls the associated block forever (or at least until you break out of the loop,
but you'll have to read ahead to find out how to do that).
for...in

Earlier we said that the only built-in Ruby looping primitives were while and until. What’s
this for thing, then? Well, for is almost a lump of syntactic sugar.

When you write this:

for song in playlist
song.play
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Loops ® 141

Ruby translates it into something like this:

playlist.each do |song|
song.play
end

The only difference between the for loop and the each form is the scope of local variables that
are defined in the body. This is discussed in Section 9.7, Variable Scope, Loops, and Blocks, on
page 142.

You can use for to iterate over any object that responds to the method each, such as an Array
or a Range:

for i in ['fee', 'fi', 'fo', 'fum']
print i, " "

end

for i in 1..3
print i, " "

end

for i in File.open("ordinal").find all {|line| line =~ /d$/}
print i.chomp, " "

end

produces:
fee fi fo fum 1 2 3 second third
As long as your class defines a sensible each method, you can use a for loop to traverse its

objects:

class Periods

def each
yield "Classical"
yield "Jazz"
yield "Rock"
end
end

periods = Periods.new

for genre in periods
print genre, " "

end

produces:

Classical Jazz Rock

break, redo, and next

The loop control constructs break, redo, and next let you alter the normal flow through a loop
. 3
or iterator.

break terminates the immediately enclosing loop; control resumes at the statement following
the block. redo repeats the current iteration of the loop from the start but without reevaluating
the condition or fetching the next element (in an iterator). next skips to the end of the loop,
effectively starting the next iteration:

3. Ruby 1.8 and earlier also supported the retry keyword as a looping mechanism. This has been removed
in Ruby 1.9.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.7

Chapter 9. Expressions ® 142

while line = gets
next if line =~ /"\s*#/ # skip comments
break if line =~ /”END/ # stop at end

substitute stuff in backticks and try again
redo if line.gsub! (/" (.*?)"/) { eval($l) }

process line ...
end

These keywords can also be used within blocks. Although you can use them with any block,
they typically make the most sense when the block is being used for iteration:

i=0
loop do
i+=1
next if i < 3
print i
break if i > 4
end

produces:

345

A value may be passed to break and next. When used in conventional loops, it probably makes
sense only to do this with break, where it sets the value returned by the loop. (Any value
given to next is effectively lost.) If a conventional loop doesn’t execute a break, its value is nil.

result = while line = gets
break(line) if line =~ /answer/
end

process answer(result) if result

If you want the nitty-gritty details of how break and next work with blocks and procs, take
a look at the reference description on page 338. If you are looking for a way of exiting from
nested blocks or loops, take a look at Object#catch on page 341.

Variable Scope, Loops, and Blocks

The while, until, and for loops are built into the language and do not introduce new scope;
previously existing locals can be used in the loop, and any new locals created will be available
afterward.

The scoping rules for blocks (such as those used by loop and each) are different. Normally,
the local variables created in these blocks are not accessible outside the block:

[1, 2, 3].each do |x|

y=x+1
end
[x,y1
produces:

prog.rb:4:in “<main>': undefined local variable or method “x' for main:Object
(NameError)

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Variable Scope, Loops, and Blocks ® 143

However, if at the time the block executes a local variable already exists with the same name
as that of a variable in the block, the existing local variable will be used in the block. Its value
will therefore be available after the block finishes. As the following example shows, this
applies to normal variables in the block but not to the block’s parameters:

= "initial value"

= "another value"

1, 2, 3].each do [x]
y=x+1

[X, y1 #=>["initial value", 4]

Note that the assignment to the variable doesn’t have to be executed; the Ruby interpreter
just needs to have seen that the variable exists on the left side of an assignment:

a = "never used" if false
[99].each do |i]
a=1 # this sets the variable in the outer scope
end
a # => 99

You can list block-local variables in the block’s parameter list, preceded by a semicolon. Contrast
this code, which does not use block-locals:

square = "yes"
total = 0

[1, 2, 3].each do |val]
square = val * val
total += square

end

puts "Total = #{total}, square = #{square}"
produces:

Total = 14, square = 9

with the following code, which uses a block-local variable, so square in the outer scope is not
affected by a variable of the same name within the block:

square = "yes"
total = 0

[1, 2, 3].each do |val; square|
square = val * val
total += square

end

puts "Total = #{total}, square = #{square}"
produces:

Total = 14, square = yes

If you are concerned about the scoping of variables with blocks, turn on Ruby warnings,
and declare your block-local variables explicitly.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

10.1

cHAPTER 10

Exceptions, catch, and throw

So far, we’ve been developing code in Pleasantville, a wonderful place where nothing ever,
ever goes wrong. Every library call succeeds, users never enter incorrect data, and resources
are plentiful and cheap. Well, that’s about to change. Welcome to the real world!

In the real world, errors happen. Good programs (and programmers) anticipate them and
arrange to handle them gracefully. This isn’t always as easy as it may sound. Often the code
that detects an error does not have the context to know what to do about it. For example,
attempting to open a file that doesn’t exist is acceptable in some circumstances and is a fatal
error at other times. What'’s your file-handling module to do?

The traditional approach is to use return codes. The open method could return some specific
value to say it failed. This value is then propagated back through the layers of calling routines
until someone wants to take responsibility for it. The problem with this approach is that
managing all these error codes can be a pain. If a function calls open, then read, and finally
close and if each can return an error indication, how can the function distinguish these error
codes in the value it returns to its caller?

To a large extent, exceptions solve this problem. Exceptions let you package information about
an error into an object. That exception object is then propagated back up the calling stack
automatically until the runtime system finds code that explicitly declares that it knows how
to handle that type of exception.

The Exception Class

Information about an exception is encapsulated in an object of class Exception or one of class
Exception’s children. Ruby predefines a tidy hierarchy of exceptions, shown in Figure 1,
Standard exception hierarchy, on page 146. As we’ll see later, this hierarchy makes handling
exceptions considerably easier.

When you need to raise an exception, you can use one of the built-in Exception classes, or you
can create one of your own. Make your own exceptions subclasses of StandardError or one of
its children. If you don't, your exceptions won’t be caught by default.

Every Exception has associated with it a message string and a stack backtrace. If you define
your own exceptions, you can add extra information.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 10. Exceptions, catch, and throw ® 146

Exception
NoMemoryError
ScriptError
LoadError
Gem: :LoadError
NotImplementedError
SyntaxError
SecurityError
SignalException
Interrupt
StandardError
ArgumentError
Gem: :Requirement: :BadRequirementError
EncodingError
Encoding: :CompatibilityError
Encoding: :ConverterNotFoundError
Encoding: :InvalidByteSequenceError
Encoding: :UndefinedConversionError
FiberError
IndexError
KeyError
StopIteration
IOError
EOFError
LocalJumpError
Math::DomainError
NameError
NoMethodError
RangeError
FloatDomainError
RegexpError
RuntimeError
Gem: :Exception
SystemCallError
ThreadError
TypeError
ZeroDivisionError
SystemExit
Gem: :SystemExitException
SystemStackError

Figure 1—Standard exception hierarchy

10.2 Handling Exceptions

Here’s some simple code that uses the open-uri library to download the contents of a web
page and write it to a file, line by line:

tut_exceptions/fetch_web_page/fetch1.rb

require 'open-uri'

web _page = open("http://pragprog.com/podcasts")
output = File.open("podcasts.html", "w")

while line = web page.gets

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/fetch_web_page/fetch1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Handling Exceptions ® 147

output.puts line
end
output.close

What happens if we get a fatal error halfway through? We certainly don’t want to store an
incomplete page to the output file.

Let’s add some exception-handling code and see how it helps. To do exception handling,
we enclose the code that could raise an exception in a begin/end block and use one or more
rescue clauses to tell Ruby the types of exceptions we want to handle. Because we specified
Exception in the rescue line, we’ll handle exceptions of class Exception and all of its subclasses
(which covers all Ruby exceptions). In the error-handling block, we report the error, close
and delete the output file, and then reraise the exception:

tut_exceptions/fetch_web_page/fetch2.rb
require 'open-uri'
page = "podcasts"
file name = "#{page}.html"
web_page = open("http://pragprog.com/#{page}")
output = File.open(file name, "w")
begin
while line = web page.gets
output.puts line
end
output.close
rescue Exception
STDERR.puts "Failed to download #{page}: #{$!'}"
output.close
File.delete(file name)
raise
end

When an exception is raised and independent of any subsequent exception handling, Ruby
places a reference to the associated exception object into the global variable $! (the exclamation
point presumably mirroring our surprise that any of our code could cause errors). In the
previous example, we used the $! variable to format our error message.

After closing and deleting the file, we call raise with no parameters, which reraises the
exception in $!. This is a useful technique, because it allows you to write code that filters
exceptions, passing on those you can’t handle to higher levels. It's almost like implementing
an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can specify
multiple exceptions to catch. At the end of each rescue clause, you can give Ruby the name
of a local variable to receive the matched exception. Most people find this more readable
than using $! all over the place:

begin
eval string
rescue SyntaxError, NameError => boom

print "String doesn't compile: " + boom
rescue StandardError => bang
print "Error running script: " + bang

end

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/fetch_web_page/fetch2.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 10. Exceptions, catch, and throw © 148

How does Ruby decide which rescue clause to execute? It turns out that the processing is
pretty similar to that used by the case statement. For each rescue clause in the begin block,
Ruby compares the raised exception against each of the parameters in turn. If the raised
exception matches a parameter, Ruby executes the body of the rescue and stops looking. The
match is made using parameter===$!. For most exceptions, this means that the match will
succeed if the exception named in the rescue clause is the same as the type of the currently
thrown exception or is a superclass of that exception.' If you write a rescue clause with no
parameter list, the parameter defaults to StandardError.

If no rescue clause matches or if an exception is raised outside a begin/end block, Ruby moves
up the stack and looks for an exception handler in the caller, then in the caller’s caller, and
50 on.

Although the parameters to the rescue clause are typically the names of exception classes,
they can be arbitrary expressions (including method calls) that return an Exception class.

System Errors

System errors are raised when a call to the operating system returns an error code. On POSIX
systems, these errors have names such as EAGAIN and EPERM. (If you're on a Unix box, you
could type man errno to get a list of these errors.)

Ruby takes these errors and wraps them each in a specific exception object. Each is a subclass
of SystemCallError, and each is defined in a module called Ermo. This means you’ll find
exceptions with class names such as Errno::EAGAIN, Ermo::EIO, and Ermo::EPERM. If you want to
get to the underlying system error code, Ermo exception objects each have a class constant
called (somewhat confusingly) Ermo that contains the value.

Errno: :EAGAIN: :Errno # => 35
Errno: :EPERM: :Errno # =1
Errno: :EWOULDBLOCK: :Errno # => 35

Note that EWOULDBLOCK and EAGAIN have the same error number. This is a feature of the
operating system of the computer used to produce this book—the two constants map to the
same error number. To deal with this, Ruby arranges things so that Errno:EAGAIN and
Erro::EWOULDBLOCK are treated identically in a rescue clause. If you ask to rescue one, you'll
rescue either. It does this by redefining SystemCallError#=== so that if two subclasses of Sys-
temCallError are compared, the comparison is done on their error number and not on their
position in the hierarchy.

Tidying Up

Sometimes you need to guarantee that some processing is done at the end of a block of code,
regardless of whether an exception was raised. For example, you may have a file open on
entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains a chunk
of code that will always be executed as the block terminates. It doesn’t matter if the block
exits normally, if it raises and rescues an exception, or if it is terminated by an uncaught
exception—the ensure block will get run:

1. This comparison happens because exceptions are classes, and classes in turn are kinds of Module. The
=== method is defined for modules, returning true if the class of the operand is the same as or is a
descendant of the receiver.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Handling Exceptions ® 149

f = File.open("testfile")
begin

.. process
rescue

.. handle error
ensure

f.close
end

Beginners commonly make the mistake of putting the File.open inside the begin block. In this
case, that would be incorrect, because open can itself raise an exception. If that were to happen,
you wouldn’t want to run the code in the ensure block, because there’d be no file to close.

The else clause is a similar, although less useful, construct. If present, it goes after the rescue
clauses and before any ensure. The body of an else clause is executed only if no exceptions
are raised by the main body of code.

f = File.open("testfile")

begin
.. process
rescue
.. handle error
else
puts "Congratulations-- no errors!"
ensure
f.close
end
Play It Again

Sometimes you may be able to correct the cause of an exception. In those cases, you can use
the retry statement within a rescue clause to repeat the entire begin/end block. Clearly,
tremendous scope exists for infinite loops here, so this is a feature to use with caution (and
with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, take a look at the following, adapted from
Minero Aoki’s net/smtp.rb library:

@esmtp = true

begin
First try an extended login. If it fails, fall back to a normal login
if @esmtp then @command.ehlo(helodom)
else @command.helo(helodom)
end

rescue ProtocolError
if @esmtp then
@esmtp = false
retry
else
raise
end
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

10.3

Chapter 10. Exceptions, catch, and throw ® 150

This code tries first to connect to an SMTP server using the EHLO command, which is not
universally supported. If the connection attempt fails, the code sets the @esmtp variable to
false and retries the connection. If this fails a second time, the exception is raised up to the
caller.

Raising Exceptions

So far, we’ve been on the defensive, handling exceptions raised by others. It’s time to turn
the tables and go on the offensive. (Some say your gentle authors are always offensive, but
that’s a different book.)

You can raise exceptions in your code with the Object#raise method (or its somewhat judg-
mental synonym, Object#fail):

raise
raise "bad mp3 encoding"
raise InterfaceException, "Keyboard failure", caller

The first form simply reraises the current exception (or a RuntimeError if there is no current
exception). This is used in exception handlers that intercept an exception before passing it
on.

The second form creates a new RuntimeError exception, setting its message to the given string.
This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument and the stack trace to the third argument. Typically the
first argument will be either the name of a class in the Exception hierarchy or a reference to
an instance of one of these classes.” The stack trace is normally produced using the Object#caller
method.

Here are some typical examples of raise in action:

raise
raise "Missing name" if name.nil?

if i >= names.size
raise IndexError, "#{i} >= size (#{names.size})"
end

raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is often
useful in library modules. We do this using the caller method, which returns the current stack
trace. We can take this further; the following code removes two routines from the backtrace
by passing only a subset of the call stack to the new exception:

raise ArgumentError, "Name too big", caller[l..-1]

2. Technically, this argument can be any object that responds to the message exception by returning an
object such that object.kind_of?(Exception) is true.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

catch and throw ® 151

Adding Information to Exceptions

You can define your own exceptions to hold any information that you need to pass out from
the site of an error. For example, certain types of network errors may be transient depending
on the circumstances. If such an error occurs and the circumstances are right, you could set
a flag in the exception to tell the handler that it may be worth retrying the operation:

tut_exceptions/retry_exception.rb
class RetryException < RuntimeError
attr :ok _to retry
def initialize(ok to retry)
@ok_to_retry = ok _to_retry
end
end

Somewhere down in the depths of the code, a transient error occurs:

tut_exceptions/read_data.rb
def read data(socket)
data = socket.read(512)
if data.nil?
raise RetryException.new(true), "transient read error"
end
.. normal processing
end

Higher up the call stack, we handle the exception:

begin
stuff = read_data(socket)
.. process stuff

rescue RetryException => detail
retry if detail.ok to retry
raise

end

10.4 catch and throw

Although the exception mechanism of raise and rescue is great for abandoning execution
when things go wrong, it's sometimes nice to be able to jump out of some deeply nested
construct during normal processing. This is where catch and throw come in handy. Here’s a
trivial example—this code reads a list of words one at a time and adds them to an array.
When done, it prints the array in reverse order. However, if any of the lines in the file doesn’t
contain a valid word, we want to abandon the whole process.

word_list = File.open("wordlist")
catch (:done) do
result = []
while line = word list.gets
word = line.chomp

throw :done unless word =~ /~\w+$/
result << word
end

puts result.reverse
end

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/retry_exception.rb
http://media.pragprog.com/titles/ruby4/code/tut_exceptions/read_data.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 10. Exceptions, catch, and throw ® 152

catch defines a block that is labeled with the given name (which may be a Symbol or a String).
The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch block with a
matching symbol. When it finds it, Ruby unwinds the stack to that point and terminates the
block. So, in the previous example, if the input does not contain correctly formatted lines,
the throw will skip to the end of the corresponding catch, not only terminating the while loop
but also skipping the code that writes the reversed list. If the throw is called with the optional
second parameter, that value is returned as the value of the catch. In this example, our word
list incorrectly contains the line “*wow*.” Without the second parameter to throw, the corre-
sponding catch returns nil.

word list = File.open("wordlist")
word in error = catch(:done) do
result = []
while line = word list.gets
word = line.chomp
throw(:done, word) unless word =~ /"\w+$/
result << word
end
puts result.reverse
end
if word in error
puts "Failed: '#{word in error}' found, but a word was expected"
end

produces:

Failed: '*wow*' found, but a word was expected

The following example uses a throw to terminate interaction with the user if ! is typed in
response to any prompt:

tut_exceptions/catchthrow.rb
def prompt_and get(prompt)
print prompt
res = readline.chomp
throw :quit requested if res == "/"
res
end

catch :quit_requested do
name = prompt_and get("Name: "
age = prompt_and get("Age: "

— -

sex = prompt_and get("Sex: ")
..
process information

end

As this example illustrates, the throw does not have to appear within the static scope of the
catch.

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/catchthrow.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

11.1

11.2

CHAPTER 11

Basic Input and Qutput

Ruby provides what at first sight looks like two separate sets of I/O routines. The first is the
simple interface —we’ve been using it pretty much exclusively so far:

print "Enter your name: "
name = gets

A whole set of I/O-related methods is implemented in the Kernel module—gets, open, print,
printf, putc, puts, readline, readlines, and test—that makes it simple and convenient to write
straightforward Ruby programs. These methods typically do I/O to standard input and
standard output, which makes them useful for writing filters. You'll find them documented

under class Object on page 599.

The second way, which gives you a lot more control, is to use IO objects.

What Is an 10 Object?

Ruby defines a single base class, 10, to handle input and output. This base class is subclassed
by classes File and BasicSocket to provide more specialized behavior, but the principles are
the same. An |0 object is a bidirectional channel between a Ruby program and some external
resource.' An 10 object may have more to it than meets the eye, but in the end you still simply
write to it and read from: it.

In this chapter, we’ll be concentrating on class |0 and its most commonly used subclass, class
File. For more details on using the socket classes for networking, see the library description
on page 807.

Opening and Closing Files

As you may expect, you can create a new file object using File.new:

file = File.new("testfile", "r")
... process the file
file.close

1. For those who just have to know the implementation details, this means that a single 10 object can
sometimes be managing more than one operating system file descriptor. For example, if you open a
pair of pipes, a single 10 object contains both a read pipe and a write pipe.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

11.3

Chapter 11. Basic Input and Output ® 154

The first parameter is the filename. The second is the mode string, which lets you open the
file for reading, writing, or both. (Here we opened testfile for reading with an "r'. We could
also have used "w" for write or "r+" for read-write. The full list of allowed modes appears in
the reference section on page 494.) You can also optionally specify file permissions when
creating a file; see the description of File.new on page 494 for details. After opening the file,
we can work with it, writing and/or reading data as needed. Finally, as responsible software
citizens, we close the file, ensuring that all buffered data is written and that all related
resources are freed.

But here Ruby can make life a little bit easier for you. The method File.open also opens a file.
In regular use, it behaves just like File.new. However, if you associate a block with the call,
open behaves differently. Instead of returning a new File object, it invokes the block, passing
the newly opened File as a parameter. When the block exits, the file is automatically closed.

File.open("testfile", "r") do |file]
... process the file
end # <- file automatically closed here

This second approach has an added benefit. In the earlier case, if an exception is raised while
processing the file, the call to file.close may not happen. Once the file variable goes out of
scope, then garbage collection will eventually close it, but this may not happen for a while.
Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside the block,
the file is closed before the exception is propagated on to the caller. It’s as if the open method
looks like the following:

class File
def File.open(*args)
result = f = File.new(*args)
if block given?
begin
result = yield f
ensure
f.close
end
end

result
end
end

Reading and Writing Files

The same methods that we’ve been using for “simple” I/O are available for all file objects.
So, gets reads a line from standard input (or from any files specified on the command line
when the script was invoked), and file.gets reads a line from the file object file.

For example, we could create a program called copy.rb:

tut_io/copy.rb

while line = gets
puts line

end

http://media.pragprog.com/titles/ruby4/code/tut_io/copy.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Reading and Writing Files ® 155

If we run this program with no arguments, it will read lines from the console and copy them
back to the console. Note that each line is echoed once the Return key is pressed. (In this and
later examples, we show user input in a bold font.) The "D is the end-of-file character on
Unix systems.

$ ruby copy.rb
These are lines
These are lines
that I am typing
that I am typing
~D

We can also pass in one or more filenames on the command line, in which case gets will read
from each in turn:

$ ruby copy.rb testfile
This is line one

This is line two

This is line three

And so on...

Finally, we can explicitly open the file and read from it:

File.open("testfile") do |file|
while line = file.gets
puts line
end
end

produces:

This is line one
This is line two
This is line three
And so on...

As well as gets, I/O objects enjoy an additional set of access methods, all intended to make
our lives easier.

Iterators for Reading

As well as using the usual loops to read data from an |0 stream, you can also use various
Ruby iterators. I0#each_byte invokes a block with the next 8-bit byte from the 10 object (in
this case, an object of type File). The chr method converts an integer to the corresponding
ASCII character:

File.open("testfile") do |file|
file.each byte.with_index do |ch, index|
print "#{ch.chr}:#{ch} "
break if index > 10
end
end

produces:

T:84 h:104 1:105 s:115 :32 i:105 s:115 :32 1:108 i:105 n:110 e:101

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 11. Basic Input and Output * 156

|0#each_line calls the block with each line from the file. In the next example, we’ll make the
original newlines visible using String#dump so you can see that we're not cheating;:

File.open("testfile") do |file|
file.each line {|line| puts "Got #{line.dump}" }
end

produces:

Got "This is line one\n"
Got "This is line two\n"
Got "This is line three\n"
Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will break up the
input accordingly, returning the line ending at the end of each line of data. That’s why you
see the \n characters in the output of the previous example. In the next example, we’ll use
the character e as the line separator:

File.open("testfile") do |file]|
file.each line("e") {|line| puts "Got #{ line.dump }" }
end

produces:

Got "This is line"

Got " one"

Got "\nThis is line"

Got " two\nThis is line"
Got " thre"

Got "e"

Got "\nAnd so on...\n"

If you combine the idea of an iterator with the autoclosing block feature, you get |0.foreach.
This method takes the name of an I/O source, opens it for reading, calls the iterator once for
every line in the file, and then closes the file automatically:

I0.foreach("testfile") {|line| puts line }

produces:

This is line one
This is line two
This is line three
And so on...

Or, if you prefer, you can retrieve an entire file into a string or into an array of lines:

read into string

str = I0.read("testfile")

str.length # => 66

str[0, 30] # => "This is line one\nThis is line "

read into an array

arr = I0.readlines("testfile")
arr.length # => 4

arr[0] # => "This 1is line one\n"

Don't forget that I/O is never certain in an uncertain world —exceptions will be raised on
most errors, and you should be ready to rescue them and take appropriate action.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Reading and Writing Files ® 157

Writing to Files

So far, we’ve been merrily calling puts and print, passing in any old object and trusting that
Ruby will do the right thing (which, of course, it does). But what exactly is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts and
print is converted to a string by calling that object’s to_s method. If for some reason the to_s
method doesn’t return a valid string, a string is created containing the object’s class name
and ID, something like #<ClassName:0x123456>:

Note the "w", which opens the file for writing
File.open("output.txt", "w") do |file|

file.puts "Hello"

file.puts "1 + 2 = #{1+2}"
end

Now read the file in and print its contents to STDOUT
puts File.read("output.txt")

produces:

Hello
1+2=3

The exceptions are simple, too. The nil object will print as the empty string, and an array
passed to puts will be written as if each of its elements in turn were passed separately to puts.

What if you want to write binary data and don’t want Ruby messing with it? Well, normally
you can simply use |0#print and pass in a string containing the bytes to be written. However,
you can get at the low-level input and output routines if you really want—look at the docu-
mentation for |0#sysread and |0#syswrite on page 554.

And how do you get the binary data into a string in the first place? The three common ways
are to use a literal, poke it in byte by byte, or use Array#pack:”

strl = "\0011002\1003" # => "\u0001\u0002\u00O3"
str2 = ""

str2 << 1 << 2 <<3 # => "\u0001\u0002\u0003"
[1, 2, 3].pack("c*") # => "|x01\x02\x03"

But | Miss My C++ iostream

Sometimes there’s just no accounting for taste. However, just as you can append an object
to an Array using the << operator, you can also append an object to an output I0 stream:

endl = "|n"
STDOUT << 99 << " red balloons" << endl

produces:

99 red balloons

Again, the << method uses to_s to convert its arguments to strings before printing them.

Although we started off disparaging the poor << operator, there are actually some good
reasons for using it. Because other classes (such as String and Array) also implement a <<

2. The pack method takes an array of data and packs it into a string. See the description in the reference

section on page 432.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

11.4

Chapter 11. Basic Input and Output ® 158

operator with similar semantics, you can quite often write code that appends to something
using << without caring whether it is added to an array; a file, or a string. This kind of flex-
ibility also makes unit testing easy. We discuss this idea in greater detail in the chapter on
duck typing on page 343.

Doing I/0 with Strings

There are often times where you need to work with code that assumes it’s reading from or
writing to one or more files. But you have a problem: the data isn’t in files. Perhaps it’s
available instead via a SOAP service, or it has been passed to you as command-line param-
eters. Or maybe you're running unit tests, and you don’t want to alter the real file system.

Enter StringlO objects. They behave just like other I/O objects, but they read and write strings,
not files. If you open a StringlO object for reading, you supply it with a string. All read oper-
ations on the StringlO object then read from this string. Similarly, when you want to write to
a StringlO object, you pass it a string to be filled.

require 'stringio'

ip = StringIO.new("now is\nthe time\nto learn\nRuby!'")
op = StringIO.new("", "w")

ip.each_line do |line|
op.puts line.reverse
end
op.string # => "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

Talking to Networks
Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set of classes
in the socket library (described briefly in this book on page 807 and in detail on the web page
of the previous edition of this book at .http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-
contents). These give you access to TCP, UDP, SOCKS, and Unix domain sockets, as well as
any additional socket types supported on your architecture. The library also provides helper
classes to make writing servers easier. Here’s a simple program that gets information about
our user website on a local web server using the HTTP OPTIONS request:

require 'socket'

client = TCPSocket.open('127.0.0.1', 'www')

client.send("OPTIONS /~dave/ HTTP/1.0\n\n", 0) # 0 means standard packet
puts client.readlines

client.close

produces:

HTTP/1.1 200 OK

Date: Mon, 27 May 2013 17:31:00 GMT

Server: Apache/2.2.22 (Unix) DAV/2 PHP/5.3.15 with Suhosin-Patch mod ssl1/2.2.22
OpenSSL/0.9.8r

Allow: GET,HEAD,POST,OPTIONS

Content-Length: 0

Connection: close

Content-Type: text/html

http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents
http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

11.5

Parsing HTML * 159

At a higher level, the lib/net set of library modules provides handlers for a set of application-
level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are documented in the
library section on page 772. For example, the following program lists the images that are
displayed on this book’s home page. (To save space, we show only the first three):

require 'net/http'

http = Net::HTTP.new('pragprog.com', 80)
response = http.get('/book/ruby3/programming-ruby-1-9"')

if response.message == "OK"

puts response.body.scan(/<img alt=".*?" src="(.*?)"/m).uniq[0,3]
end
produces:
http://pragprog.com/assets/logo-c5c¢7f9c2f950df63a71871ba2f6bbl15.gif
http://pragprog.com/assets/drm-free80-9120ffac998173dcOba7e5875d082f18.png
http://imagery.pragprog.com/products/99/ruby3 xlargecover.jpg?1349967653

Although attractively simple, this example could be improved significantly. In particular,
it doesn’t do much in the way of error handling. It should really report “Not Found” errors
(the infamous 404) and should handle redirects (which happen when a web server gives the
client an alternative address for the requested page).

We can take this to a higher level still. By bringing the open-uri library into a program, the
Object#open method suddenly recognizes http:// and ftp:// URLs in the filename. Not just that
—it also handles redirects automatically.

require 'open-uri'

open('http://pragprog.com') do |f|

puts f.read.scan(/<img alt=".*?" src="(.*?)"/m).uniq[0,3]
end
produces:
http://pragprog.com/assets/logo-c5c7f9c2f950df63a71871ba2f6bbl15.gif
http://pragprog.com/assets/drm-free80-9120ffac998173dcOba7e5875d082f18.png
http://imagery.pragprog.com/products/353/jvrails2_xlargebeta.jpg?1368826914

Parsing HTML

Having read HTML from a website, you might want to parse information out of it. Often,
simple regular expressions do the job. In the example that follows, we're using the %r{...}
regular expression literal, because the match contains a forward slash character, and regular
expressions are complex enough without having to add extra backslashes.

require 'open-uri'
page = open('http://pragprog.com/titles/ruby3/programming-ruby-1-9').read
if page =~ %r{<title>(.*?)</title>}m
puts "Title is #{$1l.inspect}"
end

produces:

Title is "The Pragmatic Bookshelf | Programming Ruby 1.9"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 11. Basic Input and Output ® 160

But regular expressions won't always work. For example, if someone had an extra space in
the <title> tag, the match would have failed. For real-world use, you probably want to use
alibrary that can parse HTML (and XML) properly. Although not part of Ruby, the Nokogiri
library is very popular.” It's a very rich library—we’ll only scratch the surface here. Docu-
mentation is available inside the gem.

require 'open-uri'
require 'nokogiri'

doc = Nokogiri::HTML(open("http://pragprog.com/"))
puts "Page title is " + doc.xpath("//title").inner_html

Output the first paragraph in the div with an id="copyright"
(nokogiri supports both xpath and css-like selectors)
puts doc.css('div#copyright p')

Output the second hyperlink in the site-links div using xpath and css
puts "\nSecond hyperlink is"
puts doc.xpath('id("site-links")//al[2]")
puts doc.css('#site-links a:nth-of-type(2)")
produces:
Page title is The Pragmatic Bookshelf
<p>
The Pragmatic Bookshelf™ is an imprint of
The Pragmatic Programmers, LLC.

Copyright © 1999-2013 The Pragmatic Programmers, LLC.
All Rights Reserved.
</p>

Second hyperlink is
About Us
About Us

Nokogiri can also update and create HTML and XML.

3. Install it using gem install nokogiri.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

12.1

CHAPTER 12

Fibers, Threads, and Processes

Ruby gives you two basic ways to organize your program so that you can run different parts
of it apparently “at the same time.” Fibers let you suspend execution of one part of your
program and run some other part. For more decoupled execution, you can split up cooper-
ating tasks within the program, using multiple threads, or you can split up tasks between
different programs, using multiple processes. Let’s look at each in turn.

Fibers

Ruby 1.9 introduced fibers. Although the name suggests some kind of lightweight thread,
Ruby’s fibers are really just a very simple coroutine mechanism. They let you write programs
that look like you are using threads without incurring any of the complexity inherent in
threading. Let’s look at a simple example. We’d like to analyze a text file, counting the
occurrence of each word. We could do this (without using fibers) in a simple loop:

counts = Hash.new(0)
File.foreach("testfile") do |line|
line.scan(/\w+/) do |word|
word = word.downcase
counts[word] += 1
end
end
counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1l

However, this code is messy —it mixes word finding with word counting. We could fix this
by writing a method that reads the file and yields each successive word. But fibers give us
a simpler solution:

words = Fiber.new do
File.foreach("testfile") do |line|
line.scan(/\w+/) do |word|
Fiber.yield word.downcase
end
end
nil
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

*Newin 2.0¢

Chapter 12. Fibers, Threads, and Processes ® 162

counts = Hash.new(0)
while word = words.resume
counts[word] += 1
end
counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1l

The constructor for the Fiber class takes a block and returns a fiber object. For now, the code
in the block is not executed.

Subsequently, we can call resume on the fiber object. This causes the block to start execution.
The file is opened, and the scan method starts extracting individual words. However, at this
point, Fiberyield is invoked. This suspends execution of the block—the resume method that
we called to run the block returns any value given to Fiber.yield.

Our main program enters the body of the loop and increments the count for the first word
returned by the fiber. It then loops back up to the top of the while loop, which again calls
words.resume while evaluating the condition. The resume call goes back into the block, contin-
uing just after it left off (at the line after the Fiber.yield call).

When the fiber runs out of words in the file, the foreach block exits, and the code in the fiber
terminates. Just as with a method, the return value of the fiber will be the value of the last
expression evaluated (in this case the nil)." The next time resume is called, it returns this value
nil. You'll get a FiberError if you attempt to call resume again after this.

Fibers are often used to generate values from infinite sequences on demand. Here’s a fiber
that returns successive integers divisible by 2 and not divisible by 3:

twos = Fiber.new do

num = 2
loop do
Fiber.yield(num) unless num % 3 ==
num += 2
end
end
10.times { print twos.resume, " " }
produces:

248 10 14 16 20 22 26 28

Because fibers are just objects, you can pass them around, store them in variables, and so
on. Fibers can be resumed only in the thread that created them.

Ruby 2.0 adds a new twist to this—you can now use lazy enumerators to gracefully handle
infinite lists. These are described Lazy Enumerators in Ruby 2, on page 61.

Fibers, Coroutines, and Continuations

The basic fiber support in Ruby is limited —fibers can yield control only back to the code
that resumed them. However, Ruby comes with two standard libraries that extend this
behavior. The fiber library (described in the library section on page 755) adds full coroutine

1. Infact, the nil is not strictly needed, as foreach will return nil when it terminates. The nil just makes it
explicit.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

12.2

Multithreading ® 163

support. Once it is loaded, fibers gain a transfer method, allowing them to transfer control to
arbitrary other fibers.

A related but more general mechanism is the continuation. A continuation is a way of
recording the state of your running program (where it is, the current binding, and so on)
and then resuming from that state at some point in the future. You can use continuations to
implement coroutines (and other new control structures). Continuations have also been used
to store the state of a running web application between requests—a continuation is created
when the application sends a response to the browser; then, when the next request arrives
from that browser, the continuation is invoked, and the application continues from where
it left off. You enable continuations in Ruby by requiring the continuation library, described
in the library section on page 739.

Multithreading

Often the simplest way to do two things at once is to use Ruby threads. Prior to Ruby 1.9,
these were implemented as green threads—threads were switched within the interpreter.
In Ruby 1.9, threading is now performed by the operating system. This is an improvement,
but not quite as big an improvement as you might want. Although threads can now take
advantage of multiple processors (and multiple cores in a single processor), there’s a major
catch. Many Ruby extension libraries are not thread safe (because they were written for the
old threading model). So, Ruby compromises: it uses native operating system threads but
operates only a single thread at a time. You'll never see two threads in the same application
running Ruby code truly concurrently. (You will, however, see threads busy doing, say, I/O
while another thread executes Ruby code. That’s part of the point.)

Creating Ruby Threads

Creating a new thread is pretty straightforward. The code that follows is a simple example.
It downloads a set of web pages in parallel. For each URL that it is asked to download, the
code creates a separate thread that handles the HTTP transaction.

require 'net/http'
pages = %w(www.rubycentral.org slashdot.org www.google.com)

threads = pages.map do |page to fetch|
Thread.new(page to fetch) do |url|
http = Net::HTTP.new(url, 80)
print "Fetching: #{url}\n"
resp = http.get('/")
print "Got #{url}: #{resp.message}\n"
end
end
threads.each {|thr| thr.join }

produces:

Fetching: www.rubycentral.org
Fetching: slashdot.org
Fetching: www.google.com

Got www.google.com: OK

Got slashdot.org: OK

Got www.rubycentral.org: OK

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 12. Fibers, Threads, and Processes ® 164

Let’s look at this code in more detail, because a few subtle things are happening.

New threads are created with the Thread.new call. It is given a block that contains the code to
be run in a new thread. In our case, the block uses the net/http library to fetch the top page
from each of our nominated sites. Our tracing clearly shows that these fetches are going on
in parallel.

When we create the thread, we pass the required URL as a parameter. This parameter is
passed to the block as url. Why do we do this, rather than simply using the value of the
variable page_to_fetch within the block?

A thread shares all global, instance, and local variables that are in existence at the time the
thread starts. As anyone with a kid brother can tell you, sharing isn’t always a good thing.
In this case, all three threads would share the variable page_to_fetch. The first thread gets
started, and page_to_fetch is set to "www.rubycentral.org". In the meantime, the loop creating the
threads is still running. The second time around, page_to_fetch gets set to "slashdot.org". If the
first thread has not yet finished using the page_to_fetch variable, it will suddenly start using
this new value. These kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread —each
thread will have its own copy of these variables. In our case, the variable url will be set at
the time the thread is created, and each thread will have its own copy of the page address.
You can pass any number of arguments into the block via Thread.new.

This code also illustrates a gotcha. Inside the loop, the threads use print to write out the
messages, rather than puts. Why? Well, behind the scenes, puts splits its work into two chunks:
it writes its argument, and then it writes a newline. Between these two, a thread could get
scheduled, and the output would be interleaved. Calling print with a single string that already
contains the newline gets around the problem.

Manipulating Threads

Another subtlety occurs on the last line in our download program. Why do we call join on
each of the threads we created?

When a Ruby program terminates, all threads are killed, regardless of their states. However,
you can wait for a particular thread to finish by calling that thread’s Thread#join method. The
calling thread will block until the given thread is finished. By calling join on each of the
requester threads, you can make sure that all three requests have completed before you ter-
minate the main program. If you don’t want to block forever, you can give join a timeout
parameter—if the timeout expires before the thread terminates, the join call returns nil.
Another variant of join, the method Thread#value, returns the value of the last statement exe-
cuted by the thread.

In addition to join, a few other handy routines are used to manipulate threads. The current
thread is always accessible using Thread.current. You can obtain a list of all threads using
Thread.list, which returns a list of all Thread objects that are runnable or stopped. To determine
the status of a particular thread, you can use Thread#status and Thread#alive?.

You can adjust the priority of a thread using Thread#priority=. Higher-priority threads will
run before lower-priority threads. We'll talk more about thread scheduling, and stopping
and starting threads, in just a bit.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Multithreading ® 165

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.
Variables local to the block containing the thread code are local to the thread and are not
shared. But what if you need per-thread variables that can be accessed by other threads—
including the main thread? Class Thread has a facility that allows thread-local variables to
be created and accessed by name. You simply treat the thread object as if it were a Hash,
writing to elements using []= and reading them back using []. In the example that follows,
each thread records the current value of the variable count in a thread-local variable with the
key mycount. To do this, the code uses the symbol :mycount when indexing thread objects. (A
race condition” exists in this code, but we haven't talked about synchronization yet, so we'll
just quietly ignore it for now.)

count = 0
threads = 10.times.map do |i]
Thread.new do
sleep(rand(0.1))

Thread.current[:mycount] = count
count += 1
end
end
threads.each {|t| t.join; print t[:mycount], ", " }

puts "count = #{count}"

produces:

7, 6, 6, 8, 4,5, 1, 9, 2, 3, count = 10

The main thread waits for the subthreads to finish and then prints that thread’s value of
count. Just to make it interesting, each thread waits a random time before recording the value.

Threads and Exceptions

What happens if a thread raises an unhandled exception depends on the setting of the
abort_on_exception flag (documented in the reference on page 702) and on the setting of the
interpreter’s $DEBUG flag (described in the Ruby options section on page 210).

If abort_on_exception is false and the debug flag is not enabled (the default condition), an
unhandled exception simply kills the current thread —all the rest continue to run. In fact,
you don’t even hear about the exception until you issue a join on the thread that raised it. In
the following example, thread 1 blows up and fails to produce any output. However, you
can still see the trace from the other threads.

2. Arace condition occurs when two or more pieces of code (or hardware) both try to access some shared
resource, and the outcome changes depending on the order in which they do so. In the example here,
it is possible for one thread to set the value of its mycount variable to count, but before it gets a chance
to increment count, the thread gets descheduled and another thread reuses the same value of count.
These issues are fixed by synchronizing the access to shared resources (such as the count variable).

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

threads = 4.times.map do |number|
Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"
end
end
puts "Waiting"
sleep 0.1
puts "Done"

produces:
0

2
Waiting
3

Done

Chapter 12. Fibers, Threads, and Processes ® 166

You normally don’t sleep waiting for threads to terminate—you’d use join. If you join to a
thread that has raised an exception, then that exception will be raised in the thread that does

the joining;:

threads = 4.times.map do |number|
Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"
end
end

puts "Waiting"
threads.each do |t]|
begin
t.join
rescue RuntimeError => e
puts "Failed: #{e.message}"
end
end
puts "Done"

produces:

0

Waiting

2

3

Failed: Boom!
Done

However, set abort_on_exception to true or use -d to turn on the debug flag, and an unhandled
exception kills the main thread, so the message Done never appears. (This is different from
Ruby 1.8, where the exception killed all running threads.)

Thread.abort on exception = true
threads = 4.times.map do |number|
Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

12.3

12.4

Controlling the Thread Scheduler * 167

end
end
puts "Waiting"
threads.each {|t]| t.join }
puts "Done"

produces:

0

2

prog.rb:4:in “block (2 levels) in <main>': Boom! (RuntimeError)

Controlling the Thread Scheduler

In a well-designed application, you'll normally just let threads do their thing; building timing
dependencies into a multithreaded application is generally considered to be bad form,
because it makes the code far more complex and also prevents the thread scheduler from
optimizing the execution of your program.

The Thread class provides a number of methods that control the scheduler. Invoking Thread.stop
stops the current thread, and invoking Thread#run arranges for a particular thread to be run.
Thread.pass deschedules the current thread, allowing others to run, and Thread#join and #value
suspend the calling thread until a given thread finishes. These last two are the only low-
level thread control methods that the average program should use. In fact, we now consider
most of the other low-level thread control methods too dangerous to use correctly in programs
we write.” Fortunately, Ruby has support for higher-level thread synchronization.

Mutual Exclusion

Let’s start by looking at a simple example of a race condition—multiple threads updating a
shared variable:

sum = 0
threads = 10.times.map do
Thread.new do
100 _000.times do
new value = sum + 1

print "#{new value} " if new value % 250 000 == 0
sum = new_value
end
end
end

threads.each(&:join)
puts "\nsum = #{sum}"

produces:
250000 250000 250000 250000 250000 500000 500000
sum = 599999

We create 10 threads, and each increments the shared sum variable 100,000 times. And yet,
when the threads all finish, the final value in sum is considerably less than 1,000,000. Clearly
we have a race condition. The reason is the print call that sits between the code that calculates
the new value and the code that stores it back into sum. In one thread, the updated value

3. And, worse, some of these primitives are unsafe in use. Charles Nutter of JRuby fame has a blog post
that illustrates one problem: http://blog.headius.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html.

http://blog.headius.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 12. Fibers, Threads, and Processes ® 168

gets calculated —let’s say that the value of sum is 99,999, so new_value will be 100,000. Before
storing the new value back into sum, we call print, and that causes another thread to be
scheduled (because we're waiting for the I/O to complete). So a second thread also fetches
the value of 99,999 and increments it. It stores 100,000 into sum, then loops around again and
stores 100,001, and 100,002, and so on. Eventually the original thread continues running
because it finished writing its message. It immediate stores it’s value of 100,000 into the sum,
overwriting (and losing) all the values stored by the other thread(s). We lost data.

Fortunately, that’s easy to fix. We use the built-in class Mutex to create synchronized regions
—areas of code that only one thread may enter at a time.

Some grade schools coordinate students’ access to the bathrooms during class time using a
system of bathroom passes. Each room has two passes, one for girls and one for boys. To
visit the bathroom, you have to take the appropriate pass with you. If someone else already
has that pass, you have to cross your legs and wait for them to return. The bathroom pass
controls access to the critical resource—you have to own the pass to use the resource, and
only one person can own it at a time.

A mutex is like that bathroom pass. You create a mutex to control access to a resource and
then lock it when you want to use that resource. If no one else has it locked, your thread
continues to run. If someone else has already locked that particular mutex, your thread
suspends (crossing its legs) until they unlock it.

Here’s a version of our counting code that uses a mutex to ensure that only one thread
updates the count at a time:

sum = 0
mutex = Mutex.new
threads = 10.times.map do
Thread.new do
100_000.times do

mutex.lock #### one at a time, please
new_value = sum + 1 #
print "#{new value} " if new value % 250 000 ==
sum = new_value #
mutex.unlock H#it##
end
end

end

threads.each(&:join)
puts "\nsum = #{sum}"
produces:

250000 500000 750000 1000000
sum = 1000000

This pattern is so common that the Mutex class provides Mutex#synchronize, which locks the
mutex, runs the code in a block, and then unlocks the mutex. This also ensures that the mutex
will get unlocked even if an exception is thrown while it is locked.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Mutual Exclusion ® 169

sum = 0
mutex = Mutex.new
threads = 10.times.map do

Thread.new do
100 000.times do

mutex.synchronize do H#it#H
new value = sum + 1 #
print "#{new value} " if new value % 250 000 ==
sum = new_value #

end #it##

end
end
end

threads.each(&:join)
puts "\nsum = #{sum}"

produces:

250000 500000 750000 1000000
sum = 1000000

Sometimes you want to claim a lock if a mutex is currently unlocked, but you don’t want to
suspend the current thread if it isn’t. The Mutex#try_lock method takes the lock if it can, but
returns false if the lock is already taken. The following code illustrates a hypothetical currency
converter. The ExchangeRates class caches rates from an online feed, and a background thread
updates that cache once an hour. This update takes a minute or so. In the main thread, we
interact with our user. However, rather than just go dead if we can’t claim the mutex that
protects the rate object, we use try_lock and print a status message if the update is in process.

rate mutex = Mutex.new
exchange rates = ExchangeRates.new
exchange rates.update from online feed

Thread.new do
loop do
sleep 3600
rate mutex.synchronize do
exchange rates.update from online feed
end
end
end

loop do
print "Enter currency code and amount: "
line = gets
if rate mutex.try lock
puts(exchange rates.convert(line)) ensure rate mutex.unlock
else
puts "Sorry, rates being updated. Try again in a minute"
end
end

If you are holding the lock on a mutex and you want to temporarily unlock it, allowing
others to use it, you can call Mutex#sleep. We could use this to rewrite the previous example:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

12.5

Chapter 12. Fibers, Threads, and Processes ® 170

rate mutex = Mutex.new
exchange rates = ExchangeRates.new
exchange rates.update from online feed

Thread.new do
rate mutex.lock
loop do
rate mutex.sleep 3600
exchange rates.update from online feed
end
end

loop do
print "Enter currency code and amount: "
line = gets
if rate mutex.try lock
puts(exchange rates.convert(line)) ensure rate mutex.unlock
else
puts "Sorry, rates being updated. Try again in a minute"
end
end

Queues and Condition Variables

Most of the examples in this chapter use the Mutex class for synchronization. However, Ruby
comes with another library that is particularly useful when you need to synchronize work
between producers and consumers. The Queue class, located in the thread library, implements
a thread-safe queuing mechanism. Multiple threads can add and remove objects from each
queue, and each addition and removal is guaranteed to be atomic. For an example, see the
description of the thread library on page 813.

A condition variable is a controlled way of communicating an event (or a condition) between
two threads. One thread can wait on the condition, and the other can signal it. The thread
library extends threads with condition variables. Again, see the Monitor library for an
example.

Running Multiple Processes

Sometimes you may want to split a task into several process-sized chunks—maybe to take
advantage of all those cores in your shiny new processor. Or perhaps you need to run a
separate process that was not written in Ruby. Not a problem: Ruby has a number of methods
by which you may spawn and manage separate processes.

Spawning New Processes

You have several ways to spawn a separate process; the easiest is to run some command
and wait for it to complete. You may find yourself doing this to run some separate command
or retrieve data from the host system. Ruby does this for you with the system and backquote
(or backtick) methods:

system("tar xzf test.tgz") # => true
“date” # => "Mon May 27 12:31:17 CDT 2013\n"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Running Multiple Processes ® 171

The method Object#system executes the given command in a subprocess; it returns true if the
command was found and executed properly. It raises an exception if the command cannot
be found. It returns false if the command ran but returned an error. In case of failure, you'll
find the subprocess’s exit code in the global variable $?.

One problem with system is that the command'’s output will simply go to the same destination
as your program’s output, which may not be what you want. To capture the standard output
of a subprocess, you can use the backquote characters, as with “date” in the previous example.
Remember that you may need to use String#chomp to remove the line-ending characters from
the result.

OK, this is fine for simple cases—we can run some other process and get the return status.
But many times we need a bit more control than that. We’d like to carry on a conversation
with the subprocess, possibly sending it data and possibly getting some back. The method
10.popen does just this. The popen method runs a command as a subprocess and connects that
subprocess’s standard input and standard output to a Ruby |0 object. Write to the |0 object,
and the subprocess can read it on standard input. Whatever the subprocess writes is available
in the Ruby program by reading from the 10 object.

For example, on our systems one of the more useful utilities is pig, a program that reads
words from standard input and prints them in pig latin (or igpay atinlay). We can use this
when our Ruby programs need to send us output that our five-year-olds shouldn’t be able
to understand:

pig = I0.popen("local/util/pig", "w+")
pig.puts "ice cream after they go to bed"
pig.close write

puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the more subtle real-world com-
plexities involved in driving subprocesses through pipes. The code certainly looks simple
enough: open the pipe, write a phrase, and read back the response. But it turns out that the
pig program doesn’t flush the output it writes. Our original attempt at this example, which
had a pig.puts followed by a pig.gets, hung forever. The pig program processed our input, but
its response was never written to the pipe. We had to insert the pig.close_write line. This sends
an end-of-file to pig’s standard input, and the output we're looking for gets flushed as pig
terminates.

popen has one more twist. If the command you pass it is a single minus sign (-), popen will
fork a new Ruby interpreter. Both this and the original interpreter will continue running by
returning from the popen. The original process will receive an 10 object back, and the child
will receive nil. This works only on operating systems that support the fork(2) call (and for
now this excludes Windows).

http://www.freebsd.org/cgi/man.cgi?query=fork&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 12. Fibers, Threads, and Processes ® 172

pipe = IO.popen("-","w+")
if pipe
pipe.puts "Get a job!"
STDERR.puts "Child says '#{pipe.gets.chomp}'"

else
STDERR.puts "Dad says '#{gets.chomp}'"
puts "OK"

end

produces:

Dad says 'Get a job!'
Child says 'OK'

As well as the popen method, some platforms support Object#fork, Object#exec, and 10.pipe.
The filenaming convention of many |0 methods and Object#open will also spawn subprocesses
if you put a | as the first character of the filename (see the introduction to class |10 on page
536 for details). Note that you cannot create pipes using File.new; it’s just for files.

Independent Children

Sometimes we don’t need to be quite so hands-on; we’d like to give the subprocess its
assignment and then go on about our business. Later, we'll check to see whether it has fin-
ished. For instance, we may want to kick off a long-running external sort:

exec("sort testfile > output.txt") if fork.nil?
The sort is now running in a child process
carry on processing in the main program

... dum di dum ...

then wait for the sort to finish
Process.wait

The call to Object#fork returns a process ID in the parent and returns nil in the child, so the
child process will perform the Object#exec call and run sort. Later, we issue a Process.wait call,
which waits for the sort to complete (and returns its process ID).

If you'd rather be notified when a child exits (instead of just waiting around), you can set
up a signal handler using Object#trap (described in the reference on page 630). Here we set
up a trap on SIGCLD, which is the signal sent on “death of child process”:

trap("CLD") do

pid = Process.wait

puts "Child pid #{pid}: terminated"
end

fork { exec("sort testfile > output.txt") }

Do other stuff...

produces:

Child pid 22026: terminated

For more information on using and controlling external processes, see the documentation
for Object#open and 10.popen, as well as the section on the Process module on page 637.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Running Multiple Processes ® 173

Blocks and Subprocesses

10.popen works with a block in pretty much the same way as File.open does. If you pass it a
command, such as date, the block will be passed an |0 object as a parameter:

I0.popen("date") {|f| puts "Date is #{f.gets}" }
produces:

Date is Mon May 27 12:31:17 CDT 2013

The 10 object will be closed automatically when the code block exits, just as it is with File.open.

If you associate a block with fork, the code in the block will be run in a Ruby subprocess, and
the parent will continue after the block:

fork do
puts "In child, pid = #$$"
exit 99

end

pid = Process.wait
puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}"
produces:

In child, pid = 22033
Child terminated, pid = 22033, status = 99

$? is a global variable that contains information on the termination of a subprocess. See the
section on Process::Status on page 644 for more information.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 13

Unit Testing

Unit testing is testing that focuses on small chunks (units) of code, typically individual
methods or lines within methods. This is in contrast to most other forms of testing, which
consider the system as a whole.

Why focus in so tightly? It's because ultimately all software is constructed in layers; code in
one layer relies on the correct operation of the code in the layers below. If this underlying
code turns out to contain bugs, then all higher layers are potentially affected. This is a big
problem. Fred may write some code with a bug one week, and then you may end up calling
it, indirectly, two months later. When your code generates incorrect results, it will take you
a while to track down the problem in Fred’s method. And when you ask Fred why he wrote
it that way, the likely answer will be “I don’t remember. That was months ago.”

If instead Fred had unit tested his code when he wrote it, two things would have happened.
First, he’d have found the bug while the code was still fresh in his mind. Second, because
the unit test was only looking at the code he’d just written, when the bug did appear, he'd
only have to look through a handful of lines of code to find it, rather than doing archaeology
on the rest of the code base.

Unit testing helps developers write better code. It helps before the code is actually written,
because thinking about testing leads you naturally to create better, more decoupled designs.
It helps as you're writing the code, because it gives you instant feedback on how accurate
your code is. And it helps after you've written code, both because it gives you the ability to
check that the code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

But why have a chapter on unit testing in the middle of a book on Ruby? Well, it’s because
unit testing and languages such as Ruby seem to go hand in hand. The flexibility of Ruby
makes writing tests easy, and the tests make it easier to verify that your code is working.
Once you get into the swing of it, you'll find yourself writing a little code, writing a test or
two, verifying that everything is copacetic, and then writing some more code.

Unit testing is also pretty trivial —run a program that calls part of your application’s code,
get back some results, and then check the results are what you expected.

Let’s say we're testing a Roman number class. So far, the code is pretty simple: it just lets us
create an object representing a certain number and display that object in Roman numerals:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 176

unittesting/romanbug.rb

This code has bugs

class Roman
MAX_ROMAN = 4999

def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX ROMAN}"

end
@value = value
end
FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["l", 501, ["xl", 40],
["x", 101, ["ix", 9], ["v", 5], ["iv", 4],
["iv, 111
def to s
value = @value
roman = ""

for code, factor in FACTORS
count, value = value.divmod(factor)
roman << code unless count.zero?
end
roman
end
end

We could test this code by writing another program, like this:

require relative 'romanbug'

r = Roman.new(1)
fail "'i' expected" unless r.to s == "i"

r = Roman.new(9)
fail "'ix' expected" unless r.to s == "ix"

However, as the number of tests in a project grows, this kind of ad hoc approach can start
to get complicated to manage. Over the years, various unit testing frameworks have emerged
to help structure the testing process. Ruby comes with Ryan Davis’ MiniTest.'

MiniTest is largely compatible with Test::Unit but without a lot of bells and whistles (test-
case runners, GUI support, and so on). However, because there are areas where it is different
and because there are tens of thousands of tests out there that assume the Test::Unit API,
Ryan has also added a compatibility layer to MiniTest. For a little bit more information on
the differences between the two, see MiniTest::Unit vs. Test::Unit, on page 177. In this chapter,
we’ll be using the Test::Unit wrappér, because it automatically runs tests for us. But we’ll
also be using some of the new assertions available in MiniTest.

1. InRuby 1.8, this was Nathaniel Talbott’s Test::Unit framework. MiniTest is a rewrite of this.

http://media.pragprog.com/titles/ruby4/code/unittesting/romanbug.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

13.1

The Testing Framework ® 177

Folks have been using Test::Unit with Ruby for a good number of years now. However, the core team
decided to replace the testing framework that comes as standard with Ruby with something a little
leaner. Ryan Davis and Eric Hodel wrote MiniTest::Unit as a partial drop-in replacement for Test::Unit.

Most of the assertions in MiniTest mirror those in Test::Unit::TestCase. The major differences are the
absence of assert_not_raises and assert_not_throws and the renaming of all the negative assertions. In
Test::Unit you'd say assert_not_nil(x) and assert_not(x); in MiniTest you'd use refute_nil(x) and refute(x).

MiniTest also drops most of the little-used features of Test::Unit, including test cases, GUI runners,
and some assertions.

And, probably most significantly, MiniTest does not automatically invoke the test cases when you
execute a file that contains them.

So, you have three basic options with this style of unit testing:
e require "minitest/unit", and use the MiniTest functionality.

e require "test/unit’, and use MiniTest with the Test::Unit compatibility layer. This adds in the
assertions in Additional Test::Unit assertions, on page 194, and enables the autorun functionality.

® You can install the test-unit gem and get all the original Test::Unit functionality back, along with
a bunch of new assertions.

The Testing Framework

The Ruby testing framework is basically three facilities wrapped into a neat package:

¢ It gives you a way of expressing individual tests.
¢ It provides a framework for structuring the tests.
e It gives you flexible ways of invoking the tests.

Assertions == Expected Results

Rather than have you write series of individual if statements in your tests, the testing
framework provides a set of assertions that achieve the same thing. Although a number of
different styles of assertion exist, they all follow basically the same pattern. Each gives you
a way of specifying a desired result and a way of passing in the actual outcome. If the actual
doesn’t equal the expected, the assertion outputs a nice message and records the failure.

For example, we could rewrite our previous test of the Roman class using the testing
framework. For now, ignore the scaffolding code at the start and end, and just look at the
assert_equal methods:

require relative 'romanbug'
require 'test/unit'
class TestRoman < Test::Unit::TestCase

def test simple
assert equal("i", Roman.new(l).to s)
assert equal("ix", Roman.new(9).to s)
end

end

report erratum « discuss

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 178

produces:

Run options:
Running tests:

Finished tests in 0.006937s, 144.1545 tests/s, 288.3091 assertions/s.
1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

The first assertion says that we're expecting the Roman number string representation of 1
to be “i,” and the second test says we expect 9 to be “ix.” Luckily for us, both expectations
are met, and the tracing reports that our tests pass. Let’s add a few more tests:

require_relative 'romanbug'

require 'test/unit'

class TestRoman < Test::Unit::TestCase
def test simple

assert_equal("i", Roman.new(1l).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)
end
end
produces:

Run options:

Running tests:

F

Finished tests in 0.006579s, 151.9988 tests/s, 303.9976 assertions/s.
1) Failure:

test simple(TestRoman) [prog.rb:6]:

<"ii"> expected but was

<"i">,

1 tests, 2 assertions, 1 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Uh-oh! The second assertion failed. See how the error message uses the fact that the assert
knows both the expected and actual values: it expected to get “ii” but instead got “i.”
Looking at our code, you can see a clear bug in to_s. If the count after dividing by the factor
is greater than zero, then we should output that many Roman digits. The existing code outputs

just one. The fix is easy:

def to_s
value = @value
roman = ""
for code, factor in FACTORS
count, value = value.divmod(factor)
roman << (code * count)
end
roman
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The Testing Framework ® 179

Now let’s run our tests again:

require relative 'roman3'

require 'test/unit'

class TestRoman < Test::Unit::TestCase
def test simple

assert_equal("i", Roman.new(1l).to_s)
assert _equal("ii", Roman.new(2).to_s)
assert _equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)
end
end
produces:

Run options:
Running tests:

Finished tests in 0.006027s, 165.9200 tests/s, 829.6001 assertions/s.
1 tests, 5 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Looking good. We can now go a step further and remove some of that duplication:

require_relative 'roman3'
require 'test/unit'

class TestRoman < Test::Unit::TestCase
NUMBERS = { 1 => "i", 2 => "ii", 3 => "iii", 4 => "iv", 5 => "v", 9 => "ix" }

def test simple
NUMBERS .each do |arabic, roman|
r = Roman.new(arabic)
assert_equal(roman, r.to_s)
end
end
end

produces:

Run options:
Running tests:

Finished tests in 0.006280s, 159.2357 tests/s, 955.4140 assertions/s.
1 tests, 6 assertions, O failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

What else can we test? Well, the constructor checks that the number we pass in can be rep-
resented as a Roman number, throwing an exception if it can’t. Let’s test the exception:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 180

require relative 'roman3'
require 'test/unit'

class TestRoman < Test::Unit::TestCase
NUMBERS = { 1 => "i", 2 => "ii", 3 => "iii", 4 => "iv", 5 => "v", 9 => "ix" }

def test simple
NUMBERS.each do |arabic, roman|
r = Roman.new(arabic)
assert equal(roman, r.to s)
end
end

def test range
no exception for these two...
Roman.new(1)
Roman.new(4999)
but an exception for these
assert raises(RuntimeError) { Roman.new(0) }
assert raises(RuntimeError) { Roman.new(5000) }
end
end

produces:

Run options:
Running tests:

Finished tests in 0.006736s, 296.9121 tests/s, 1187.6485 assertions/s.
2 tests, 8 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

We could do a lot more testing on our Roman class, but let’s move on to bigger and better
things. Before we go, though, we should say that we’ve only scratched the surface of the set
of assertions available inside the testing framework. For example, for every positive assertion,
such as assert_equal, there’s a negative refutation (in this case refute_equal). The additional
assertions you get if you load the Test::Unit shim (which we do in this chapter) are listed in
Additional Test::Unit assertions, on page 194, and a full list of the MiniTest assertions is given
in Section 13.5, Test::Unit assertions, on page 193.

The final parameter to every assertion is a message that will be output before any failure
message. This normally isn’t needed, because the failure messages are normally pretty rea-
sonable. The one exception is the test refute_nil (or assert_not_nil in Test::Unit), where the message
“Expected nil to not be nil” doesn’t help much. In that case, you may want to add some
annotation of your own. (This code assumes the existence of some kind of User class.)

require 'test/unit'
class ATestThatFails < Test::Unit::TestCase
def test user created
user = User.find(1)
refute nil(user, "User with ID=1 should exist")
end
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

13.2

Structuring Tests ® 181

produces:

Run options:

Running tests:

F

Finished tests in 0.007598s, 131.6136 tests/s, 131.6136 assertions/s.
1) Failure:

test user created(ATestThatFails) [prog.rb:11]:

User with ID=1 should exist.

Expected nil to not be nil.

1 tests, 1 assertions, 1 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Structuring Tests
Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look at it.
You include the testing framework facilities in your unit test either with this:

require 'test/unit'

or, for raw MiniTest, with this:
require 'minitest/unit'

Unit tests seem to fall quite naturally into high-level groupings, called fest cases, and lower-
level groupings, which are the test methods themselves. The test cases generally contain all
the tests relating to a particular facility or feature. Our Roman number class is fairly simple,
so all the tests for it will probably be in a single test case. Within the test case, you'll probably
want to organize your assertions into a number of test methods, where each method contains
the assertions for one type of test; one method could check regular number conversions,
another could test error handling, and so on.

The classes that represent test cases must be subclasses of Test::Unit::TestCase. The methods
that hold the assertions must have names that start with test. This is important: the testing
framework uses reflection to find tests to run, and only methods whose names start with
test are eligible.

Quite often you’ll find all the test methods within a test case start by setting up a particular
scenario. Each test method then probes some aspect of that scenario. Finally, each method
may then tidy up after itself. For example, we could be testing a class that extracts jukebox
playlists from a database. (We're using the low-level DBI library to access the database.)

require 'test/unit'
require relative 'playlist builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def test empty playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
assert_empty(pb.playlist)
db.disconnect

end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 182

def test artist playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include artist("krauss")
refute empty(pb.playlist, "Playlist shouldn't be empty")
pb.playlist.each do |entry|
assert match(/krauss/i, entry.artist)
end
db.disconnect
end

def test title playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include title("midnight")
refute empty(pb.playlist, "Playlist shouldn't be empty")
pb.playlist.each do |entry|
assert match(/midnight/i, entry.title)
end
db.disconnect
end

...
end

produces:

Run options:
Running tests:

Finished tests in 0.008272s, 362.6692 tests/s, 5560.9284 assertions/s.
3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Each test starts by connecting to the database and creating a new playlist builder. Each test
ends by disconnecting from the database. (The idea of using a real database in unit tests is
questionable, because unit tests are supposed to be fast running, context independent, and
easy to set up, but it illustrates a point.)

We can extract all this common code into setup and teardown methods. Within a TestCase
class, a method called setup will be run before each and every test method, and a method
called teardown will be run after each test method finishes. Let’s emphasize that: the setup
and teardown methods bracket each test, rather than being run once per test case. This is
shown in the code that follows.

require 'test/unit'
require relative 'playlist builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def setup
@db = DBI.connect('DBI:mysql:playlists')
@pb = PlaylistBuilder.new(@db)

end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

13.3

Organizing and Running Tests ® 183

def teardown
@db.disconnect
end

def test empty playlist
assert empty(@pb.playlist)
end

def test artist playlist
@pb.include artist("krauss")
refute empty(@pb.playlist, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|
assert match(/krauss/i, entry.artist)
end
end

def test title playlist
@pb.include title("midnight")
refute empty(@pb.playlist, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|
assert match(/midnight/i, entry.title)
end
end

...
end
produces:

Run options:
Running tests:

Finished tests in 0.007683s, 390.4725 tests/s, 5987.2446 assertions/s.
3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Inside the teardown method, you can detect whether the preceding test succeeded with the
passed? method.

Organizing and Running Tests

The test cases we’ve shown so far are all runnable Test::Unit programs. If, for example, the
test case for the Roman class was in a file called test_roman.rb, we could run the tests from
the command line using this:

$ ruby test_roman.rb
Run options:
Running tests:

Finished tests in 0.004540s, 440.5286 tests/s, 1762.1145 assertions/s.
2 tests, 8 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Test::Unit is clever enough to run the tests even though there’s no main program. It collects
all the test case classes and runs each in turn.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 184

If we want, we can ask it to run just a particular test method:

$ ruby test_roman.rb -n test_range
Run options: -n test range
Running tests:

Finished tests in 0.004481s, 223.1645 tests/s, 446.3289 assertions/s.
1 tests, 2 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

or tests whose names match a regular expression:

$ ruby test_roman.rb -n /range/
Run options: -n /range/
Running tests:

Finished tests in 0.005042s, 198.3340 tests/s, 396.6680 assertions/s.
1 tests, 2 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

This last capability is a great way of grouping your tests. Use meaningful names, and you'll
be able to run (for example) all the shopping-cart-related tests by simply running tests with
names matching /cart/.

Where to Put Tests

Once you get into unit testing, you may well find yourself generating almost as much test
code as production code. All of those tests have to live somewhere. The problem is that if
you put them alongside your regular production code source files, your directories start to
get bloated —effectively you end up with two files for every production source file.

A common solution is to have a test/ directory where you place all your test source files. This
directory is then placed parallel to the directory containing the code you're developing. For
example, for our Roman numeral class, we may have this:

roman/
lib/
roman.rb
other files..

test/
test roman.rb
other tests...

other stuff...

This works well as a way of organizing files but leaves you with a small problem: how do
you tell Ruby where to find the library files to test? For example, if our TestRoman test code
was in a test/ subdirectory, how does Ruby know where to find the roman.rb source file, the
thing we're trying to test?

An option that doesn’t work reliably is to build the path into require statements in the test
code and run the tests from the test/ subdirectory:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Organizing and Running Tests ® 185

require 'test/unit'
require '../lib/roman'

class TestRoman < Test::Unit::TestCase
...
end

Why doesn’t it work? It's because our roman.rb file may itself require other source files in the
library we're writing. It'll load them using require (without the leading ../lib/), and because
they aren’t in Ruby’s $LOAD_PATH, they won’t be found. Our test just won't run. A second,
less immediate problem is that we won't be able to use these same tests to test our classes
once installed on a target system, because then they’ll be referenced simply using
require ‘roman’'.

A better solution is to assume that your Ruby program is packaged according to the conven-
tions we’ll be discussing in Section 16.2, Organizing Your Source, on page 226. In this
arrangement, the top-level lib directory of your application is assumed to be in Ruby’s load
path by all other components of the application. Your test code would then be as follows:

require 'test/unit'
require 'roman'

class TestRoman < Test::Unit::TestCase
...
end

And you'd run it using this:

$ ruby -I path/to/app/lib path/to/app/test/test_roman.rb

The normal case, where you're already in the application’s directory, would be as follows:

$ ruby -I lib test/test_roman.rb

This would be a good time to investigate using Rake to automate your testing.

Test Suites

After a while, you'll grow a decent collection of test cases for your application. You may
well find that these tend to cluster: one group of cases tests a particular set of functions, and
another group tests a different set of functions. If so, you can group those test cases together
into test suites, letting you run them all as a group.

This is easy to do—just create a Ruby file that requires test/unit and then requires each of the
files holding the test cases you want to group. This way, you build yourself a hierarchy of
test material.

* You can run individual tests by name.

® You can run all the tests in a file by running that file.

* You can group a number of files into a test suite and run them as a unit.
® You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,
testing just one method or testing the entire application.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

13.4

Chapter 13. Unit Testing ® 186

At this point, it’s worthwhile to think about naming conventions. Nathaniel Talbott, the
author of Test::Unit, uses the convention that test cases are in files named tc_xxx and test
suites are in files named ts_xxx. Most people seem to use test_as the test-case filename prefix:

file ts dbaccess.rb

require relative 'test/unit'
require relative 'test connect'
require relative 'test query'
require relative 'test update'
require relative 'test delete'

Now, if you run Ruby on the file ts_dbaccess.rb, you execute the test cases in the four files
you’ve required.

RSpec and Shoulda

The built-in testing framework has a lot going for it. It is simple, and it is compatible in style
with frameworks from other languages (such as JUnit for Java and NUnit for C#).

However, there’s a growing movement in the Ruby community to use a different style of
testing. So-called behavior-driven development encourages people to write tests in terms of
your expectations of the program’s behavior in a given set of circumstances. In many ways,
this is like testing according to the content of user stories, a common requirements-gathering
technique in agile methodologies. With these testing frameworks, the focus is not on asser-
tions. Instead, you write expectations.

Although both RSpec and Shoulda allow this style of testing, they focus on different things.
RSpec is very much concerned with driving the design side of things. You can write and
execute specs with RSpec well before you’ve written a line of application code. These specs,
when run, will output the user stories that describe your application. Then, as you fill in the
code, the specs mutate into tests that validate that your code meets your expectations.

Shoulda, on the other hand, is really more focused on the testing side. Whereas RSpec is a
complete framework, Shoulda works inside a testing framework, Test::Unit or RSpec. You
can even mix Shoulda tests with regular Test::Unit and RSpec test methods.

Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches

The scoring system used in lawn tennis originated in the Middle Ages. As players win suc-
cessive points, their scores are shown as 15, 30, and 40. The next point is a win unless your
opponent also has 40. If you're both tied at 40, then different rules apply —the first player
with a clear two-point advantage is the winner.”

We have to write a class that handles this scoring system. Let’s use RSpec specifications to
drive the process. We install RSpec with gem install rspec. We'll then create our first specification
file:

2. Some say the 0, 15, 30, 40 system is a corruption of the fact that scoring used to be done using the
quarters of a clock face. Us, we just think those medieval folks enjoyed a good joke.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RSpec and Shoulda * 187

unittesting/bdd/1/ts_spec.rb

describe "TennisScorer", "basic scoring" do
it "should start with a score of 0-0"
it "should be 15-0 if the server wins a point"
it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"
...

end

This file contains nothing more than a description of an aspect of the tennis scoring class
(that we haven't yet written, by the way). It contains a description of the basic scoring system.
Inside the description are a set of four expectations (it “should start...” and so on). We can
run this specification using the rspec command:’

$ rspec ts_spec.rb
ok ok k
Pending:
TennisScorer basic scoring should start with a score of 0-0
Not yet implemented
./ts_spec.rb:2
TennisScorer basic scoring should be 15-0 if the server wins a point
Not yet implemented
./ts_spec.rb:3
TennisScorer basic scoring should be 0-15 if the receiver wins a point
Not yet implemented
./ts_spec.rb:4
TennisScorer basic scoring should be 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:5
Finished in 0.00039 seconds
4 examples, 0 failures, 4 pending

That’s pretty cool. Executing the tests echoes our expectations back at us, telling us that each
has yet to be implemented. Coding, like life, is full of these disappointments. However,
unlike life, fixing things is just a few keystrokes away. Let’s start by meeting the first
expectation—when a game starts, the score should be 0 to 0. We’ll start by fleshing out the
test:

unittesting/bdd/2/ts_spec.rb
require relative "tennis scorer"

describe TennisScorer, "basic scoring" do
it "should start with a score of 0-0" do
ts = TennisScorer.new
ts.score.should == "0-0"
end

it "should be 15-0 if the server wins a point"

it "should be 0-15 if the receiver wins a point"

it "should be 15-15 after they both win a point"
end

3. We're running these examples with RSpec2. This will probably be the default version by the time you
read this, but I had to use gem install rspec --pre because it was prerelease when I was writing this chapter.

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/1/ts_spec.rb
http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/2/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 188

Note that we’ve assumed we have a class TennisScorer in a file called tennis_scorer.rb. Our first
expectation now has a code block associated with it. Inside that block, we create a TennisScorer
and then use a funky RSpec syntax to validate that the score starts out at 0 to 0. This partic-
ular aspect of RSpec probably generates the most controversy —some people love it, others
find it awkward. Either way, ts.score.should == "0-0" is basically the same as an assertion in
Test::Unit.

We'll beef up our TennisScorer class, but only enough to let it satisfy this assertion:

unittesting/bdd/2/tennis_scorer.rb
class TennisScorer

def score
ng-g"
end
end

We'll run our spec again:

$ rspec ts_spec.rb
. kok ok
Pending:
TennisScorer basic scoring should be 15-0 if the server wins a point
Not yet implemented
./ts_spec.rb:9
TennisScorer basic scoring should be 0-15 if the receiver wins a point
Not yet implemented
./ts_spec.rb:10
TennisScorer basic scoring should be 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:11
Finished in 0.00054 seconds
4 examples, 0 failures, 3 pending

Note that we now have three pending expectations; the first one has been satisfied.
Let’s write the next expectation:

unittesting/bdd/3/ts_spec.rb
require relative "tennis scorer"

describe TennisScorer, "basic scoring" do
it "should start with a score of 0-0" do
ts = TennisScorer.new
ts.score.should == "0-0"
end

it "should be 15-0 if the server wins a point" do
ts = TennisScorer.new
ts.give point to(:server)
ts.score.should == "15-0"

end

it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"
end

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/2/tennis_scorer.rb
http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/3/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RSpec and Shoulda * 189

This won't run, because our TennisScorer class doesn’t implement a give_point_to method. Let’s
rectify that. Our code isn't finished, but it lets the test pass:

unittesting/bdd/3/tennis_scorer.rb
class TennisScorer

OPPOSITE SIDE OF NET = { :server => :receiver, :receiver => :server }

def initialize
@score = { :server => 0, :receiver => 0 }
end

def score
"#{@score[:server]*15}-#{@score[:receiver]*15}"
end

def give point_to(player)
other = OPPOSITE SIDE OF NET[player]
fail "Unknown player #{player}" unless other
@score[player] += 1
end
end

Again, we'll run the specification:

$ rspec ts_spec.rb
__**
Pending:
TennisScorer basic scoring should be 0-15 if the receiver wins a point
Not yet implemented
./ts spec.rb:15
TennisScorer basic scoring should be 15-15 after they both win a point
Not yet implemented
./ts spec.rb:16
Finished in 0.00067 seconds
4 examples, 0 failures, 2 pending

We're now meeting two of the four initial expectations. But, before we move on, note there’s
a bit of duplication in the specification: both our expectations create a new TennisScorer object.
We can fix that by using a before stanza in the specification. This works a bit like the setup
method in Test::Unit, allowing us to run code before expectations are executed. Let’s use
this feature and, at the same time, build out the last two expectations:

unittesting/bdd/4/ts_spec.rb
require relative "tennis scorer"

describe TennisScorer, "basic scoring" do
before(:each) do
@ts = TennisScorer.new
end

it "should start with a score of 0-0" do
@ts.score.should == "0-0"
end

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/3/tennis_scorer.rb
http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/4/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 190

it "should be 15-0 if the server wins a point" do
@ts.give point to(:server) @ts.score.should ==
"15.9"

end

it "should be 0-15 if the receiver wins a point" do
@ts.give point to(:receiver) @ts.score.should ==
ng-15"

end

it "should be 15-15 after they both win a point" do
@ts.give point to(:receiver)
@ts.give point to(:server) @ts.score.should ==
"15-15"
end
end

Let’s run it:

$ rspec ts_spec.rb

Finished in 0.00088 seconds
4 examples, 0 failures

Finally, RSpec gives us an alternative way of setting up conditions for our tests. The let
method creates what looks like a variable (it’s actually a dynamically defined method) whose
value is given by evaluating a block. This lets us write the following:

unittesting/bdd/5/ts_spec.rb
require relative "tennis scorer"

describe TennisScorer, "basic scoring" do
let(:ts) { TennisScorer.new}

it "should start with a score of 0-0" do
ts.score.should == "0-0"
end

it "should be 15-0 if the server wins a point" do
ts.give point to(:server)
ts.score.should == "15-0"

end

it "should be 0-15 if the receiver wins a point" do
ts.give point to(:receiver)
ts.score.should == "@-15"

end

it "should be 15-15 after they both win a point" do
ts.give point to(:receiver)
ts.give point to(:server)
ts.score.should == "15-15"
end
end

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/5/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RSpec and Shoulda * 191

We're going to stop here, but I suggest that you might want to take this code and continue
to develop it. Write expectations such as these:

it "should be 40-0 after the server wins three points"

it "should be W-L after the server wins four points"

it "should be L-W after the receiver wins four points"

it "should be Deuce after each wins three points"

it "should be A-server after each wins three points and the server gets one more"

RSpec has a lot more depth than just the description of expectations. In particular, you can
use it with Cucumber, an entire language for describing and running complete user stories.
But that’s beyond the scope of this book.

Anyone for Shoulda?

RSpec is testing with attitude. On the other hand, Shoulda takes many of the ideas from
RSpec and humbly offers them to you for integration into your regular unit tests. For many
developers, particularly those with existing Test::Unit tests, this is a good compromise. You
get much of the descriptive power of RSpec-style expectations without having to commit to
the full framework.

Install Shoulda using gem install shoulda. Then, unlike RSpec, write a regular Test::Unit test
case. Inside it, though, you can use the Shoulda mini-language to describe your tests.

Let’s recast our final RSpec tennis scoring tests using Shoulda:

unittesting/bdd/4/ts_shoulda.rb

require 'test/unit'

require 'shoulda'

require relative 'tennis scorer.rb'

class TennisScorerTest < Test::Unit::TestCase

def assert score(target)
assert equal(target, @ts.score)
end

context "Tennis scores" do
setup do
@ts = TennisScorer.new
end

should "start with a score of 0-0" do
assert score("0-0")
end

should "be 15-0 if the server wins a point" do
@ts.give point to(:server)
assert score("15-0")

end

should "be 0-15 if the receiver wins a point" do
@ts.give point to(:receiver)
assert score("0-15")

end

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/4/ts_shoulda.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 192

should "be 15-15 after they both win a point" do
@ts.give point to(:receiver)
@ts.give point to(:server)
assert score("15-15")
end
end
end

$ ruby ts_shoulda.rb
Run options:
Running tests:

Finished tests in 0.008528s, 469.0432 tests/s, 469.0432 assertions/s.
4 tests, 4 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Behind the scenes, Shoulda is creating Test::Unit test methods for each should block in your
tests. This is why we can use regular Test::Unit assertions in Shoulda code. But Shoulda also
works hard to maintain the right context for our tests. For example, we can nest contexts
and their setup blocks, allowing us to have some initialization that’s common to all tests and
some that’s common to just a subset. We can apply this to our tennis example. We’ll write
nested contexts and put setup blocks at each level. When Shoulda executes our tests, it runs
all the appropriate setup blocks for the should blocks.

unittesting/bdd/4/ts_shoulda_1.rb

require 'test/unit'

require 'shoulda’

require relative 'tennis scorer.rb'

class TennisScorerTest < Test::Unit::TestCase
def assert score(target)
assert equal(target, @ts.score)

end
context "Tennis scores" do
setup do
@ts = TennisScorer.new
end

should "start with a score of 0-0" do
assert score("0-0")
end
context "where the server wins a point" do
setup do
@ts.give point to(:server)
end
should "be 15-0" do
assert score("15-0")
end
context "and the oponent wins a point" do
setup do
@ts.give point to(:receiver)
end
should "be 15-15" do
assert score("15-15")
end

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/4/ts_shoulda_1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

13.5

Test:Unit assertions ® 193

end

end

should "be 0-15 if the receiver wins a point" do
@ts.give point to(:receiver)
assert score("0-15")

end

end
end

Let’s run it:

$ ruby ts_shoulda_1l.rb
Run options:
Running tests:

Finished tests in 0.008962s, 446.3289 tests/s, 446.3289 assertions/s.
4 tests, 4 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

Would we use these nested contexts for this tennis scoring example? We probably wouldn't
as it stands, because the linear form is easier to read. But we use them all the time when we
have tests where we want to run through a complex scenario that builds from test to test.
This nesting lets us set up an environment, run some tests, then change the environment,
run more tests, change it again, run even more tests, and so on. It ends up making tests far
more compact and removes a lot of duplication.

Test::Unit assertions

assert | refute(boolean, <message>)
Fails if boolean is (is not) false or nil.

assert_block { block }
Expects the block to return true.

assert_ | refute_ empty(collection, <message>)
Expects empty? on collection to return true (false).

assert_ | refute_ equal(expected, actual, <message>)
Expects actual to equal/not equal expected, using ==.

assert_ | refute_in_delta(expected_float, actual_float, delta, <message>)
Expects that the actual floating-point value is (is not) within delfa of the expected value.

assert_ | refute_in_epsilon(expected_float, actual_float, epsilon=0.001, <message>)
Calculates a delta value as epsilon * min(expected, actual) and then calls the _in_delta test.

assert_ | refute_includes(collection, obj, <message>)
Expects include?(obj) on collection to return true (false).

assert_ | refute_instance_of(klass, obj, message)
Expects obj to be (not to be) a instance of klass.

assert_ | refute_kind_of(klass, obj, <message>)
Expects obj to be (not to be) a kind of klass.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 13. Unit Testing ® 194

assert_ | refute_ match(regexp, string, <message>)
Expects string to (not) match regexp.

assert_ | refute_ nil(obj, <message>)
Expects obj to be (not) nil.

assert_ | refute_ operator(objl, operator, obj2, <message>)
Expects the result of sending the message operator to obj1 with parameter ob;2 to be (not
to be) true.

assert_raises(Exception, ...) { block }
Expects the block to raise one of the listed exceptions.

assert_ | refute_respond_to(obj, message, <message>)
Expects obj to respond to (not respond to) message (a symbol).

assert_ | refute_ same(expected, actual, <message>)
Expects expected.equal?(actual).

assert_send(send_array, <message>)
Sends the message in send_array[1] to the receiver in send_array[0], passing the rest of
send_array as arguments. Expects the return value to be true.

assert_throws(expected_symbol, <message>) { block }
Expects the block to throw the given symbol.

flunk(message="Epic Fail!")
Always fails.

skip(message)
Indicates that a test is deliberately not run.

pass
Always passes.
Additional Test::Unit assertions

assert_not_equal(expected, actual, <message>)
Expects actual not to equal expected, using ==. Like refute_equal.

assert_not_match(regexp, string, <message>)
Expects string not to match regexp. Like refute_match.

assert_not_nil(obj, <message>)
Expects obj not to be nil. Like refute_nil.

assert_not_same(expected, actual, <message>)
Expects !expected.equal?(actual). Like refute_same.

assert_nothing_raised(Exception, ...) { block }
Expects the block not to raise one of the listed exceptions.

assert_nothing_thrown(expected_symbol, <message>) { block }
Expects the block not to throw the given symbol.

assert_raise(Exception, ...) { block }
Synonym for assert_raises.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

14.1

CHAPTER 14

When Trouble Strikes!

It’s sad to say, but it is possible to write buggy programs using Ruby. Sorry about that. But
not to worry! Ruby has several features that will help debug your programs. We’ll look at
these features, and then we’ll show some common mistakes you can make in Ruby and how
to fix them.

Ruby Debugger

Ruby comes with a debugger, which is conveniently built into the base system. You can run
the debugger by invoking the interpreter with the -r debug option, along with any other Ruby
options and the name of your script:

ruby -r debug <debug-options> < programfile> <program-arguments >

The debugger supports the usual range of features you'd expect, including the ability to set
breakpoints, to step into and step over method calls, and to display stack frames and variables.
It can also list the instance methods defined for a particular object or class, and it allows you
to list and control separate threads within Ruby. All the commands that are available under
the debugger are listed in Table 6, Debugger commands, on page 205.

If your Ruby installation has readline support enabled, you can use cursor keys to move
back and forth in command history and use line-editing commands to amend previous input.

To give you an idea of what the Ruby debugger is like, here’s a sample session:

$ ruby -r debug t.rb
Debug.rb
Emacs support available.
t.rb:1:def fact(n)
(rdb:1) list 1-9
[1, 9] in t.rb
=> 1 def fact(n)
2 if n<=0
3 1
4 else
5 n * fact(n-1)
6 end
7 end
8
9

p fact(5)

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

14.2

(rdb:1) b 2
Set breakpoint 1 at t.rb:2

(rdb:1) ¢

Chapter 14. When Trouble Strikes! ® 196

breakpoint 1, fact at t.rb:2

t.rb:2:

(rdb:1) disp n

1: n=5

(rdb:1) del 1
(rdb:1) watch n==
Set watchpoint 2

(rdb:1) ¢

if n <=0

watchpoint 2, fact at t.rb:fact
t.rb:1:def fact(n)

rb:

.rb:
.rb:
.rb:
.rb:

rb:

1: n=1
(rdb:1) where
--> #1 t.

#2 t

#3 t

#4 t

#5 t

#6 t.
(rdb:1) del 2
(rdb:1) ¢
120

O U1 Ul U1 U=

:in
1in
1in
1in
1in

‘fact'
“fact!
“fact!
“fact!
“fact!

Interactive Ruby

If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is
essentially a Ruby “shell” similar in concept to an operating system shell (complete with job
control). It provides an environment where you can “play around” with the language in real
time. You launch irb at the command prompt:

irb <irb-options> <ruby_script> < program-arguments>

irb displays the value of each expression as you complete it. For instance:

irb(main)
irb(main)
irb(main)
= 2
irb(main)
= 4
irb(main)
irb(main)
irb(main)
=> nil
irb(main)

Hello, world!

=> nil

:001:
1002:
1003:

:004:
:005:
1006:
1007:

:008:

0>
0*
0%

0>
0>
1>
1>

0>

irb(main):009:0>

a
2
4

+
/

U W =

® ¥ 1l

2+2
def test
puts "Hello, world!"

end

test

irb also allows you to create subsessions, each one of which may have its own context. For
example, you can create a subsession with the same (top-level) context as the original session
or create a subsession in the context of a particular class or instance. The sample session that
follows is a bit longer but shows how you can create subsessions and switch between them.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

14.3

Editor Support * 197

$irb

irb(main):001:0> irb

irb#1(main):001:0> jobs

#0->irb on main (#<Thread:0x401bd654>: stop)

#1->irb#1 on main (#<Thread:0x401d5a28>: running)

irb#1(main):002:0> fg 0

#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,
@context=#<IRB::Context:0x401ca86c>>

irb(main):002:0> class VolumeKnob

irb(main):003:1> end In this same irb session, we'll create

= nil . . a new subsession in the context of
irb(main):004:0> irb VolumeKnob €| {jacs VolumeKnob

irb#2(VolumeKnob):001:0> def initialize
irb#2(VolumeKnob):002:1> @vol=50
irb#2(VolumeKnob):003:1> end

=>nil

irb#2(VolumeKnob):004:0> def up We can use fg 0 to switch back to
irb#2(VolumeKnob):005:1> @vol += 10 the mat“} iessm]:f take ah]‘t’(_’k ‘:t all
i . . current joos, and se€ what 1instance
zl;#rﬁl(\lolumeKnOb).ooe:1 o / methods VolumeKnob defines
irb#2(VolumeKnob):007:0> fg 0

#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>, @signal_status=:IN_EVAL,
@context=#<IRB::Context:0x401ca86c>>

irb(main):005:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)

#1->irb#1 on main (#<Thread:0x401d5a28>: stop)

#2->irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)

irb(main):006:0> VolumeKnob.instance_methods

= ['up']
irb(main):007:0> v = VolumeKnob.new Make a new VolumeKnob object,
#<VolumeKnob: @vol=50> and create a new subsession with
irb(main):008:0> irb v that object as the context
irb#3(#<VolumeKnob:0x401e7d40>):001:0> up

=> 60

irb#3(#<VolumeKnob:0x401e7d40>):002:0> up

=>70 - - —
irb#3(#<VolumeKnob:0x40167d40>):003:0> up | SWitch back to the main session, kill
-~ 80 the subsessions, and exit

irb#3(VolumeKnob):004:0> fg 0

#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>, @signal_status=:IN_EVAL,
@context=#<IRB::Context:0x401ca86c>>

irb(main):009:0> kill 1,2,3

=[1,2,3]

irb(main):010:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)

irb(main):011:0> exit

For a full description of all the commands that irb supports, see Chapter 18, Interactive Ruby
Shell, on page 253.

As with the debugger, if your version of Ruby was built with GNU readline support, you
can use Emacs- or vi-style key bindings to edit individual lines or to go back and reexecute
or edit a previous line—just like a command shell.

irb is a great learning tool. It's very handy if you want to try an idea quickly and see whether
it works.

Editor Support

The Ruby interpreter is designed to read a program in one pass; this means you can pipe an
entire program to the interpreter’s standard input, and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs, for
instance, you can select a region of Ruby text and use the command Meta-| to execute Ruby:.
The Ruby interpreter will use the selected region as standard input, and output will go to a

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

14.4

Chapter 14. When Trouble Strikes! ® 198

buffer named *Shell Command Output*. This feature has come in quite handy for us while
writing this book —just select a few lines of Ruby in the middle of a paragraph, and try it!

You can do something similar in the vi editor using :%!ruby, which replaces the program text
with its output, or :w_,!ruby, which displays the output without affecting the buffer. Other
editors have similar features.'

Some Ruby developers look for IDE support. Several decent alternatives are available.
Arachno RubyAptana, RubyMine, NetBeans, Ruby in Steel, Idea, and so on, all have their
devotees. It’s a rapidly changing field, so we recommend a quick web search rather than
rely on the advice here.

While we are on the subject, this would probably be a good place to mention that a Ruby
mode for Emacs is included in the Ruby source distribution as ruby-mode.el in the misc/ subdi-
rectory. Many other editors now include support for Ruby; check your documentation for
details.

But It Doesn’t Work!

So, you've read through enough of the book, you start to write your very own Ruby program,
and it doesn’t work. Here’s a list of common gotchas and other tips:

e First and foremost, run your scripts with warnings enabled (the -w command-line option).

e If you happen to forget a comma (,) in an argument list—especially to print—you can
produce some very odd error messages.

¢ An attribute setter is not being called. Within a class definition, Ruby will parse setter=
as an assignment to a local variable, not as a method call. Use the form self.setter= to
indicate the method call:

class Incorrect
attr accessor :one, :two
def initialize

one =1 # incorrect - sets local variable
self.two = 2
end

end

obj = Incorrect.new
obj.one # => nil
obj.two # => 2

* Objects that don’t appear to be properly set up may have been victims of an incorrectly
spelled initialize method:

class Incorrect
attr_reader :answer

def initialise # <-- spelling error
@answer = 42
end
end

1. Many developers use Sublime Text (http://www.sublimetext.com/), a cross-platform editor chock full of

features, including Ruby code execution.

http://www.sublimetext.com/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

But It Doesn't Work! ® 199

ultimate = Incorrect.new
ultimate.answer # => nil

The same kind of thing can happen if you misspell the instance variable name:

class Incorrect
attr _reader :answer
def initialize
@anwser = 42 #<-- spelling error
end
end

ultimate = Incorrect.new
ultimate.answer # => nil

A parse error at the last line of the source often indicates a missing end keyword,
sometimes quite a bit earlier.

This ugly message —syntax error, unexpected $end, expecting keyword_end —means that you
have an end missing somewhere in your code. (The $end in the message means end-of-
file, so the message simply means that Ruby hit the end of your code before finding all
the end keywords it was expecting.) Try running with -w, which will warn when it finds
ends that aren’t aligned with their opening if/while/class.

As of Ruby 1.9, block parameters are no longer in the same scope as local variables. This
may be incompatibile with older code. Run with the -w flag to spot these issues:

entry = "wibble"
[1, 2, 3].each do |entry|
do something with entry
end
puts "Last entry = #{entry}"

produces:

prog.rb:2: warning: shadowing outer local variable - entry
Last entry = wibble

Watch out for precedence issues, especially when using {...} instead of do...end:

def one(arg)
if block given?
"block given to 'one' returns #{yield}"
else
arg
end
end

def two
if block given?
"block given to 'two' returns #{yield}"
end
end

resultl = one two {
"three"

}

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 14. When Trouble Strikes! ® 200

result2 = one two do

"three"
end
puts "With braces, result = #{resultl}"
puts "With do/end, result = #{result2}"

produces:

With braces, result
With do/end, result

block given to 'two' returns three
block given to 'one' returns three

Output written to a terminal may be buffered. This means you may not see a message
you write immediately. In addition, if you write messages to both STDOUT and STDERR,
the output may not appear in the order you were expecting. Always use nonbuffered
I/O (set sync=true) for debug messages.

If numbers don’t come out right, perhaps they’re strings. Text read from a file will be
a String and will not be automatically converted to a number by Ruby. A call to Integer
will work wonders (and will throw an exception if the input isn't a well-formed integer).
The following is a common mistake Per]l programmers make:

while line = gets
numl, num2 = line.split(/,/)
...

end

You can rewrite this as follows:

while line = gets
numl, num2 = line.split(/,/)
numl = Integer(numl)
num2 = Integer(num2)
...
end

Or, you could convert all the strings using map:

while line = gets
numl, num2 = line.split(/,/).map {|val| Integer(val) }
...

end

Unintended aliasing—if you are using an object as the key of a hash, make sure it doesn’t
change its hash value (or arrange to call Hash#rehash if it does):

arr = [1, 2]

hash = { arr => "value" }

hash[arr] # => "value"

arr[0] = 99

hash[arr] # => nil

hash.rehash # => {[99, 2]=>"value"}
hash[arr] # => "value"

Make sure the class of the object you are using is what you think it is. If in doubt, use
puts my_obj.class.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

14.5

But It's Too Slow! ® 201

® Make sure your method names start with a lowercase letter and class and constant
names start with an uppercase letter.

e If method calls aren’t doing what you'd expect, make sure you've put parentheses
around the arguments.

® Make sure the open parenthesis of a method’s parameter list butts up against the end
of the method name with no intervening spaces.

¢ Use irb and the debugger.

® Use Object#freeze. If you suspect that some unknown portion of code is setting a variable
to a bogus value, try freezing the variable. The culprit will then be caught during the
attempt to modify the variable.

One major technique makes writing Ruby code both easier and more fun. Develop your
applications incrementally. Write a few lines of code, and then write tests (perhaps using
Test::Unit). Write a few more lines of code, and then exercise them. One of the major benefits
of a dynamically typed language is that things don’t have to be complete before you use
them.

But It's Too Slow!

Ruby is an interpreted, high-level language, and as such it may not perform as fast as a
lower-level language such as C. In the following sections, we'll list some basic things you
can do to improve performance; also take a look in the index under Performance for other
pointers.

Typically, slow-running programs have one or two performance graveyards, places where
execution time goes to die. Find and improve them, and suddenly your whole program
springs back to life. The trick is finding them. The Benchmark module and the Ruby profilers
can help.

Benchmark

You can use the Benchmark module, also described in the library section on page 733, to time
sections of code. For example, we may wonder what the overhead of method invocation is.
You can use Benchmark to find out.

require 'benchmark'
include Benchmark

LOOP_COUNT = 1_600_000

bmbm(12) do |test|
test.report("inline:") do
LOOP_COUNT.times do |X|
nothing
end
end
test.report("method:") do
def method
nothing
end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 14. When Trouble Strikes! ® 202

LOOP_COUNT.times do |x|

method
end
end
end
produces:
Rehearsal ------cccmccmmcmcccm e e e e ieceeeeaeee
inline: 0.100000 0.000000 0.100000 (0.102194)
method: 0.140000 0.000000 0.140000 (0.145651)
--------------------------------------- total: 0.240000sec
user system total real
inline: 0.090000 0.000000 0.090000 (0.098364)
method: 0.140000 0.000000 0.140000 (0.146260)

You have to be careful when benchmarking, because oftentimes Ruby programs can run
slowly because of the overhead of garbage collection. Because this garbage collection can
happen any time during your program’s execution, you may find that benchmarking gives
misleading results, showing a section of code running slowly when in fact the slowdown
was caused because garbage collection happened to trigger while that code was executing.
The Benchmark module has the bmbm method that runs the tests twice, once as a rehearsal
and once to measure performance, in an attempt to minimize the distortion introduced by
garbage collection. The benchmarking process itself is relatively well mannered —it doesn’t
slow down your program much.

The Profiler

Ruby comes with a code profiler (documented in the library section on page 791). The profiler
shows you the number of times each method in the program is called and the average and
cumulative time that Ruby spends in those methods.

You can add profiling to your code using the command-line option -r profile or from within
the code using require "profile". Here’s an example:

trouble/profileeg.rb
count = 0
words = File.open("/usr/share/dict/words")

while word = words.gets
word = word.chomp!
if word.length == 12
count += 1
end
end

puts "#{count} twelve-character words"

The first time we ran this (without profiling) against a dictionary of almost 235,000 words,
it took a noticeable time to complete. Wondering if we could improve on this, we added the
command-line option -r profile and tried again. Eventually we saw output that looked like
the following;:

http://media.pragprog.com/titles/ruby4/code/trouble/profileeg.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

But It's Too Slow! ® 203

20460 twelve-character words

% cumulative self self total

time seconds seconds calls ms/call ms/call name

9.03 1.21 1.21 234936 0.01 0.01 String#chomp!
8.88 2.40 1.19 234937 0.01 0.01 IO0#gets

7.61 3.42 1.02 234936 0.00 0.00 String#length
6.94 4.35 0.93 234936 0.00 0.00 Fixnum#==

0.82 4.46 0.11 20460 0.01 0.01 Fixnum#+

0.00 4.46 0.00 2 0.00 0.00 IO0#set encoding
0.00 4.46 0.00 1 0.00 0.00 IO#open

The first thing to notice is that the timings shown are a lot slower than when the program
runs without the profiler. Profiling has a serious overhead, but the assumption is that it
applies across the board, and therefore the relative numbers are still meaningful. This par-
ticular program clearly spends a lot of time in the loop, which executes almost 235,000 times.
Each time, it invokes both gets and chomp!. We could probably improve performance if we
could either make the stuff in the loop less expensive or eliminate the loop altogether. One
way of doing the latter is to read the word list into one long string and then use a pattern to
match and extract all twelve character words:

trouble/profileeg1.rb
words = File.read("/usr/share/dict/words")
count = words.scan(/"............ \n/).size

puts "#{count} twelve-character words"

Our profile numbers are now a lot better (and the program runs more than five times faster
when we take the profiling back out):

% ruby -r profile code/trouble/profileegl.rb
20462 twelve-character words

% cumulative self self total
time seconds seconds calls ms/call ms/call name
100.00 0.26 0.26 1 260.00 260.00 String#scan
0.00 0.26 0.00 1 0.00 0.00 Fixnum#to_s
0.00 0.26 0.00 1 0.00 0.00 1I0.read
0.00 0.26 0.00 1 0.00 0.00 TracePoint#enable
0.00 0.26 0.00 1 0.00 0.00 Array#size
0.00 0.26 0.00 2 0.00 0.00 IO#set encoding
0.00 0.26 0.00 2 0.00 0.00 IO0#write
0.00 0.26 0.00 1 0.00 0.00 IO0#puts
0.00 0.26 0.00 1 0.00 0.00 Kernel#puts
0.00 0.26 0.00 1 0.00 0.00 TracePoint#disable
0.00 0.26 0.00 1 0.00 260.00 #toplevel

Remember to check the code without the profiler afterward, though—sometimes the slow-
down the profiler introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the pro-
grammer of the need to apply common sense: creating unnecessary objects, performing
unneeded work, and creating bloated code will slow down your programs regardless of the
language.

http://media.pragprog.com/titles/ruby4/code/trouble/profileeg1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 14. When Trouble Strikes! ® 204

Code Execution Coverage

Ruby 1.9.2 comes with low-level code coverage built in to the interpreter (see the Coverage
module on page 740). It tracks which lines of code were executed in your code.

People are starting to build libraries that wrap this low-level functionality with filters, HTML
output, and the like. Two examples are Mark Bates” CoverMe and Christoph Olszowka’s
simplecov.

Both are installed as gems, and both come with comprehensive instructions on how to inte-
grate them into your test environment.

For our simple tennis scoring example, the summary, written as an HTML file, is fairly
straightforward:

All Files (100.0%) Generated about a minute ago

All Files (100.0%)

1 files in total. 10 relevant lines. 10 lines covered and 0 lines missed

Search:
% File « % covered < Lines ¥ Relevant Lines < Lines covered % Lines missed
Q ./tennis_scorer.rb 100.0 % 21 10 10 0

Showing 1 to 1 of 1 entries

Click the name of a file, and you’ll get a display of which lines were executed:

Al Files (100.0%) Cenerated 2 minutes ago
TElE
A“ FIIES 12 def score 1
13 "#{@score[:server]*15}-#{@score[:receiver]*15}" 4

1 files in total., 14 end

____________________ = :

|Sw=lf = i |

L% 16 def give_point_to(player) 1 .
| |17 other = OPPOSITE_SIDE_OF_NET[player]

Q Jtennis_s¢ 13 fail "Unknown player #{player}" unless other 4

& File | 4 3_j1e5 missed

i
b

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

empty

b(reak] [file|class:]line
b[reak] [file|class:Iname
blreak]

cat[ch] exception
cat[ch]

clont]

del[ete] [nnn]

disp[lay] expr

disp[lay]

down nnn=1

flrame]

fin[ish]

hlelp]

I[ist] [start—end]
m(ethod] i[nstance] obj
m[ethod] Name

nlext] nnn=1

[p] expr

qluit]

s[tep] nnn=1
th[read] I[ist]
thlread] [c[ur[rent]]]
th
th
th[read] resume nnn
th[read] [swl[itch]] nnn
trlace] (on|off) [all]
undispllay] [nnn]

read] [c[ur[rent]]] nnn
read] stop nnn

[
[
[
[

up nnn=1

v[ar] c[onst] Name
v[ar] g[lobal]

v[ar] l[ocal]

v[ar] i[stance] obj
wat[ch] expr
wlhere]

But It's Too Slow! ® 205

A null command repeats the last command.

Sets breakpoint at given line in file (default current file) or class.
Sets breakpoint at method in file or class.

Displays breakpoints and watchpoints.

Stops when exception is raised.

Lists current catches.

Continues execution.

Deletes breakpoint nnn (default all).

Displays value of nnn every time debugger gets control.
Shows current displays.

Moves down nnn levels in the call stack.

Synonym for where.

Finishes execution of the current function.

Shows summary of commands.

Lists source lines from start to end.

Displays instance methods of obj.

Displays instance methods of the class or module name.
Executes next nnn lines, stepping over methods.

Evaluates expr in the current context. expr may include assignment to variables
and method invocations.

Exits the debugger.

Executes next nnn lines, stepping into methods.
Lists all threads.

Displays status of current thread.

Makes thread nnn current and stops it.

Makes thread nnn current and stops it.
Resumes thread nnn.

Switches thread context to nnn.

Toggles execution trace of current or all threads.
Removes display (default all).

Moves up nnn levels in the call stack.

Displays constants in class or module name.
Displays global variables.

Displays local variables.

Displays instance variables of obj.

Breaks when expression becomes true.
Displays current call stack.

Table 6—Debugger commands

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

PartII

Ruby in Its Setting

15.1

CHAPTER 15

Ruby and Its World

It’s an unfortunate fact of life that our applications have to deal with the big, bad world. In
this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Windows
users will probably also want to look at the platform-specific information on page 289.

Command-Line Arguments

“In the beginning was the command line.”' Regardless of the system in which Ruby is
deployed, whether it be a super-high-end scientific graphics workstation or an embedded
PDA device, you have to start the Ruby interpreter somehow, and that gives us the oppor-
tunity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, optionally
the name of a program to run, and optionally a set of arguments for that program:

ruby <options> <-> <programfile> <arguments>"

The Ruby options are terminated by the first word on the command line that doesn’t start
with a hyphen or by the special flag -- (two hyphens).

If no filename is present on the command line or if the filename is a single hyphen, Ruby
reads the program source from standard input.

Arguments for the program itself follow the program name. For example, the following;:

$ ruby -w - "Hello World"

will enable warnings, read a program from standard input, and pass it the string "Hello World"
as an argument.

1. Thisis the title of a marvelous essay by Neal Stephenson (available online via http://www.cryptonomicon.com/

beginning.html).

http://www.cryptonomicon.com/beginning.html
http://www.cryptonomicon.com/beginning.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

*Newin 2.0%

*Newin 2.0%

*Newin2.0¢

*Newin2.0¢

Chapter 15. Ruby and Its World ® 210

Command-Line Options

-O[octal]
The 0 flag (the digit zero) specifies the record separator character (\0, if no digit follows).
-00 indicates paragraph mode: records are separated by two successive default record
separator characters. \ 0777 reads the entire file at once (because it is an illegal character).
Sets $/.

-a
Autosplit mode when used with -n or -p; equivalent to executing $F = $_.split at the top
of each loop iteration.
-C directory
Changes working directory to directory before executing.
-
Checks syntax only; does not execute the program.
--copyright
Prints the copyright notice and exits.
-d, --debug
Sets $DEBUG and $VERBOSE to true. This can be used by your programs to enable additional
tracing.
--disable-all
Disable the rubygems and RUBYOPT options (see the following descriptions).
--disable-gems

Stops Ruby from automatically loading RubyGems from require. There is a corresponding
--enable-gems option.

--disable-rubyopt
Prevents Ruby from examining the RUBYOPT environment variable. You should probably
set this in an environment you want to secure. There is a corresponding --enable-rubyopt
option.

--dump option...
Tells Ruby to dump various items of internal state. options... is a comma or space sepa-
rated list containing one or more of copyright, insns, parsetree, parsetree_with_comment, syntax,
usage, version, and yydebug. This is intended for Ruby core developers.

--enable-all
Enable the rubygems and RUBYOPT options (see the following descriptions).

--enable-gems
Allows Ruby to automatically load RubyGems from require. There is a corresponding
--disable-gems option.

--enable-rubyopt
Allows Ruby to use the RUBYOPT environment variable. (This is the default.) You should
probably disable this option in an environment you want to secure.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command-Line Arguments ® 211

-E encoding, --encoding encoding, --encoding=encoding

Specifies the default character encoding for data read from and written to the outside
world. This can be used to set both the external encoding (the encoding to be assumed
for file contents) and optionally the default internal encoding (the file contents are
transcoded to this when read and transcoded from this when written). The format of
the encoding parameter is -E external, -E external:internal, or -E :internal. See Chapter 17,
Character Encoding, on page 239 for details. See also -U.

-e 'command'

Executes command as one line of Ruby source. Several -e’s are allowed, and the commands
are treated as multiple lines in the same program. If programfile is omitted when -e is
present, execution stops after the -e commands have been run. Programs run using -e
have access to the old behavior of ranges and regular expressions in conditions —ranges
of integers compare against the current input line number, and regular expressions
match against $_.

--external-encoding=encoding

Specifies the default external coding for the program.

-F pattern

Specifies the input field separator ($;) used as the default for split (affects the -a option).

-h, --help

Displays a short help screen.

-| directories

Specifies directories to be prepended to $LOAD_PATH ($:). Multiple - options may be
present. Multiple directories may appear following each -I, separated by a colon on
Unix-like systems and by a semicolon on DOS/Windows systems.

-i [extension]

Edits ARGV files in place. For each file named in ARGV, anything you write to standard
output will be saved back as the contents of that file. A backup copy of the file will be
made if extension is supplied.

$ ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" *.,txt

--internal-encoding=encoding

Specifies the default internal coding for the program.

Enables automatic line-ending processing; sets $\ to the value of $/ and chops every
input line automatically.

Assumes a while gets; ...; end loop around your program. For example, a simple grep
command could be implemented as follows:

$ ruby -n -e "print if /wombat/" *.txt

Places your program code within the loop while gets; ...; print; end.

$ ruby -p -e "$_.downcase!" *,txt

*Newin2.0¢

*Newin2.0¢

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 15. Ruby and Its World ® 212

-r library
Requires the named library or gem before executing.

)
Looks for the program file using the RUBYPATH or PATH environment variable.

-5
Any command-line switches found after the program filename, but before any filename
arguments or before a -, are removed from ARGV and set to a global variable named for
the switch. In the following example, the effect of this would be to set the variable $opt
to "electric":
$ ruby -s prog -opt=electric ./mydata

-Tlevel
Sets the safe level, which among other things enables tainting and untrusted checks (see
Chapter 26, Locking Ruby in the Safe, on page 409). Sets $SAFE.

-U
Sets the default internal encoding to UTF-8. See Chapter 17, Character Encoding, on page
239 for details. See also -E.

-v, --verbose
Sets $VERBOSE to true, which enables verbose mode. Also prints the version number. In
verbose mode, compilation warnings are printed. If no program filename appears on
the command line, Ruby exits.

--version
Displays the Ruby version number and exits.

W
Enables verbose mode. Unlike -v, reads program from standard input if no program
files are present on the command line. We recommend running your Ruby programs
with -w.

W level
Sets the level of warnings issued. With a level of two (or with no level specified),
equivalent to -w—additional warnings are given. If level is 1, runs at the standard (default)
warning level. With -W0, absolutely no warnings are given (including those issued using
Object#warn).

-X directory
Changes working directory to directory before executing. This is the same as -C directory.

-x [directory]
Strips off text before #!ruby line and changes working directory to directory if given.

-y, --yydebug

Enables yacc debugging in the parser (waaay too much information).

Argument Processing: ARGV and ARGF

Any command-line arguments after the program filename are available to your Ruby program
in the global array ARGV. For instance, assume test.rb contains the following program:

ARGV.each {|arg| p arg }

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command-Line Arguments ® 213

Invoke it with the following command line:

$ ruby -w test.rb "Hello World" al 1.6180

It'll generate the following output:

"Hello World"
ng1n
"1.6180"

There’s a gotcha here for all you C programmers—ARGV[0] is the first argument to the program,
not the program name. The name of the current program is available in the global variable
$0, which is aliased to $PROGRAM_NAME. Notice that all the values in ARGV are strings.

If your program reads from standard input (or uses the special object ARGF, described in the
next section), the arguments in ARGV will be taken to be filenames, and Ruby will read from
these files. If your program takes a mixture of arguments and filenames, make sure you
empty the nonfilename arguments from the ARGV array before reading from the files.

ARGF

It is common for a command line program to take a list of zero or more file names to process.
It will then read through these files in turn, doing whatever it does.

Ruby provides a convenience object, referenced by the name ARGF, that handles access to
these files. When your program starts, ARGF is initialized with a reference ARGV. Because this
is a reference, changes to make to ARGV (for example when you remove options as you process
them) are seen by ARGF.

If you read from ARGF (for example by calling ARGF.gets) or from standard input (for example
by calling plain gets), Ruby will open the file whose name is the first element of ARGV and
perform the I/O on it. If, as you continue to read, you reach the end of that file, Ruby closes
it, shifts it out of the ARGV array, and then opens the next file in the list. At some point, when
you finishing reading from the last file, ARGV will return an end-of-file condition (so gets will
return nil, for example). If ARGV is initially empty, ARGF will read from standard input.

You can get to the name of the file currently being read from using ARGFfilename, and you
can get the current File object as ARGFEfile. ARGF keeps track of the total number of lines read
in ARGFlineno—if you need the line number in the current file, use ARGV.file.lineno. Here’s a
program that uses this information:

while line = gets
printf "%d: %10s[%d] %s", ARGF.lineno, ARGF.filename, ARGF.file.lineno, line
end

If we run it, passing a couple of file names, it will copy the contents of those files.

$ ruby copy.rb testfile otherfile

1: testfile[1l] This is line one
testfile[2] This is line two
testfile[3] This is line three
testfile[4] And so on...

otherfile[1] ANOTHER LINE ONE
otherfile[2] AND ANOTHER LINE TwO
otherfile[3] AND FINALLY THE LAST LINE

NOoO Uk~ WN

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

15.2

15.3

Chapter 15. Ruby and Its World * 214

In-place Editing
In-place editing is a hack inherited from Perl. It allows you to alter the contents of files passed
in on the command line, retaining a backup copy of the original contents.

To turn on in-place editing, give Ruby the file extension to use for the backup file, either
with the -i [ext] command line option, or by calling ARGF.inplace_mode=ext in your code.

Now, as your code reads through each file given on the command line, Ruby will rename
the original file by appending the backup extension. It will then create a new file with the
original name, and open it for writing on standard output. This all means that if you code
a program such as this:

while line = gets
puts line.chomp.reverse
end

and you invoked it using

$ ruby -i.bak reverse.rb testfile otherfile

You'd find that testfile and otherfile would now have reversed lines, and that the original files
would be available in testfile.bak and otherfile.bak.

For finer control over the I/O to these files, you can use the methods provided by ARGF.
They’re rarely used, so rather than document them here, we’ll refer you to ri or the online
documentation.

Program Termination

The method Object#exit terminates your program, returning a status value to the operating
system. However, unlike some languages, exit doesn’t terminate the program immediately
—exit first raises a SystemExit exception, which you may catch, and then performs a number
of cleanup actions, including running any registered at_exit methods and object finalizers.
See the reference for Object#at_exit on page 612.

Environment Variables

You can access operating system environment variables using the predefined variable ENV.
It responds to the same methods as Hash.”

ENV['SHELL"]
ENV['HOME']
ENV['USER']
ENV.keys.size
ENV.keys[0, 4]

The values of some environment variables are read by Ruby when it first starts. These vari-
ables modify the behavior of the interpreter.

The environment variables used by Ruby are listed in the following table.

2. ENVis not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Environment Variables ® 215

Variable Name Description
DLN_LIBRARY_PATH Specifies the search path for dynamically loaded modules.
HOME Points to user’s home directory. This is used when expanding ~ in file

and directory names.

LOGDIR Specifies the fallback pointer to the user’s home directory if $HOME is not
set. This is used only by Dir.chdir.

OPENSSL_CONF Specifies the location of OpenSSL configuration file.

RUBYLIB Specifies an additional search path for Ruby programs ($SAFE must be 0).

RUBYLIB_PREFIX (Windows only) Mangles the RUBYLIB search path by adding this prefix
to each component.

RUBYOPT Specifies additional command-line options to Ruby; examined after real
command-line options are parsed ($SAFE must be 0).

RUBYPATH With -S option, specifies the search path for Ruby programs (defaults to
PATH).

RUBYSHELL Specifies shell to use when spawning a process under Windows; if not
set, will also check SHELL or COMSPEC.

RUBY_TCL DLL Overrides default name for Tcl shared library or DLL.

RUBY_TK_DLL Overrides default name for Tk shared library or DLL. Both this and

RUBY_TCL_DLL must be set for either to be used.

Other environment variables affect the memory allocated by the Ruby virtual machine for
various tasks.’

Variable Name Description
RUBY_THREAD VM_STACK SIZE The VM stack size used at thread creation: 128KB (32 bit
CPU) or 256KB (64 bit CPU).
RUBY_THREAD_MACHINE_STACK SIZE The machine stack size used at thread creation: 512KB
(32 bit CPU) or 1024KB (64 bit CPU).

RUBY_FIBER_VM_STACK SIZE VM stack size used at fiber creation: 64KB or 128KB.
RUBY_FIBER_MACHINE_STACK_SIZE The machine stack size used at fiber creation: 256KB or
256KB.

The current value of these variables can be read using RubyVM::DEFAULT_PARAMS.

Writing to Environment Variables

A Ruby program may write to the ENV object. On most systems, this changes the values of
the corresponding environment variables. However, this change is local to the process that
makes it and to any subsequently spawned child processes. This inheritance of environment
variables is illustrated in the code that follows. A subprocess changes an environment variable,
and this change is inherited by a process that it then starts. However, the change is not visible
to the original parent. (This just goes to prove that parents never really know what their
children are doing.)

3. This applies to MRI only.

*Newin2.0¢

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

15.4

Chapter 15. Ruby and Its World ® 216

puts "In parent, term = #{ENV['TERM']}"

fork do
puts "Start of child 1, term = #{ENV['TERM']}"
ENV['TERM'] = "ansi"
fork do
puts "Start of child 2, term = #{ENV['TERM']}"
end

Process.wait

puts "End of child 1, term = #{ENV['TERM']1}"
end
Process.wait
puts "Back in parent, term = #{ENV['TERM']1}"
produces:
In parent, term = xterm-256color
Start of child 1, term = xterm-256color
Start of child 2, term = ansi
End of child 1, term = ansi
Back in parent, term = xterm-256color

Setting an environment variable’s value to nil removes the variable from the environment.

Where Ruby Finds Its Libraries

You use require or load to bring a library into your Ruby program. Some of these libraries are
supplied with Ruby, some you may have installed from the Ruby Application Archive, some
may have been packaged as RubyGems (of which more later), and some you may have
written yourself. How does Ruby find them?

Let’s start with the basics. When Ruby is built for your particular machine, it predefines a
set of standard directories to hold library stuff. Where these are depends on the machine in
question. You can determine this from the command line with something like this:

$ ruby -e 'puts $:'
On our OS X box, with RVM installed, this produces the following list:

/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/ruby/site ruby/2.0.0
/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/ruby/site ruby/2.0.0/x86 64-darwinl2.2.0

The site_ruby directories are intended to hold modules and extensions that you've added.
The architecture-dependent directories (x86_64-darwin... in this case) hold executables and
other things specific to this particular machine. All these directories are automatically
included in Ruby’s search for libraries.

Sometimes this isn't enough. Perhaps you're working on a large project written in Ruby and
you and your colleagues have built a substantial library of Ruby code. You want everyone
on the team to have access to all this code. You have a couple of options to accomplish this.
If your program runs at a safe level of zero (see Chapter 26, Locking Ruby in the Safe, on page
409), you can set the environment variable RUBYLIB to a list of one or more directories to be
searched. If your program is not setuid, you can use the command-line parameter -l to do
the same thing.

4. The separator between entries is a semicolon on Windows; for Unix, it’s a colon.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

15.5

RubyGems Integration ® 217

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen, this
variable is initialized to the list of standard directories, plus any additional ones you specified
using RUBYLIB and -I. You can always add directories to this array from within your running
program. Prior to Ruby 1.9, this used to be a common idiom:

$: << File.dirname(FILE)
require 'other file'

This added the directory of the running file to the search path, so other file.rb could be found
there by the subsequent require. Now we use require_relative instead.

require relative 'other file'

RubyGems Integration

This section is based on the start of the chapter on RubyGems written by Chad Fowler for the second edition
of this book.

RubyGems is a standardized packaging and installation framework for Ruby libraries and
applications. RubyGems makes it easy to locate, install, upgrade, and uninstall Ruby packages.

Before RubyGems came along, installing a new library involved searching the Web, down-
loading a package, and attempting to install it—only to find that its dependencies hadn’t
been met. If the library you want is packaged using RubyGems, however, you can now
simply ask RubyGems to install it (and all its dependencies). Everything is done for you.

In the RubyGems world, developers bundle their applications and libraries into single files
called gems. These files conform to a standardized format and typically are stored in reposi-
tories on the Internet (but you can also create your own repositories if you want).

The RubyGems system provides a command-line tool, appropriately named gem, for
manipulating these gem files. It also provides integration into Ruby so that your programs
can access gems as libraries.

Prior to Ruby 1.9, it was your responsibility to install the RubyGems software on your
computer. Now, however, Ruby comes with RubyGems baked right in.

Installing Gems on Your Machine

Your latest project calls for a lot of XML generation. You could just hard-code it, but you've
heard about Jim Weirich’s Builder library, which constructs XML directly from Ruby code.

Let’s start by seeing whether Builder is available as a gem:

$ gem query --details --remote --name-matches builder
AntBuilder (0.4.3)

Author: JRuby-extras

Homepage: http://jruby-extras.rubyforge.org/

AntBuilder: Use ant from JRuby. Only usable within JRuby
builder (2.1.2)

Author: Jim Weirich

Homepage: http://onestepback.org

Builders for MarkUp.

The --details option displays the descriptions of any gems it finds. The --remote option
searches the remote repository. And the --name-matches option says to search the central gem

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 15. Ruby and Its World * 218

repository for any gem whose name matches the regular expression /builder/. (We could have
used the short-form options -d, -r, and -n.) The result shows a number of gems have builder
in their name; the one we want is just plain builder.

The number after the name shows the latest version. You can see a list of all available versions
using the -all option. We'll also use the list command, as it lets us match on an exact name:

$ gem list --details --remote --all builder
*** REMOTE GEMS ***

builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0, 0.1.1)
Author: Jim Weirich
Homepage: http://onestepback.org
Builders for MarkUp.

Because we want to install the most recent one, we don't have to state an explicit version on
the install command; the latest is downloaded by default:

$ gem install builder

Successfully installed builder-2.1.2

1 gem installed

Installing ri documentation for builder-2.1.2...
Installing RDoc documentation for builder-2.1.2...

Several things happened here. First, we see that the latest version of the Builder gem (2.1.2)
has been installed. Next we see that RubyGems has determined that Jim has created docu-
mentation for his gem, so it sets about extracting it using RDoc.

If you're running gem install on a Unix platform and you aren’t using rvm, you'll need to
prefix the command with sudo, because by default the local gems are installed into shared
system directories.

During installation, you can add the -t option to the install command, causing RubyGems to
run the gem’s test suite (if one has been created). If the tests fail, the installer will prompt
you to either keep or discard the gem. This is a good way to gain a little more confidence
that the gem you’ve just downloaded works on your system the way the author intended.

Let’s see what gems we now have installed on our local box:

$ gem list
*¥*k | OCAL GEMS ***
builder (2.1.2)

Reading the Gem Documentation

Being that this is your first time using Builder, you're not exactly sure how to use it. Fortu-
nately, RubyGems installed the documentation for Builder on your machine. We just have
to find it.

As with most things in RubyGems, the documentation for each gem is stored in a central,
protected, RubyGems-specific place. This will vary by system and by where you may
explicitly choose to install your gems. The most reliable way to find the documents is to ask
the gem command where your RubyGems main directory is located:

$ gem environment gemdir
/usr/local/lib/ruby/gems/1.9.3

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RubyGems Integration ® 219

RubyGems stores generated documentation beneath the doc/ subdirectory of this directory.

The easiest way to view gems’ RDoc documentation is to use RubyGems’ included gem
server utility. To start gem server, simply type this:

$ gem server
Server started at http://[::ffff:0.0.0.0]:8808
Server started at http://0.0.0.0:8808

gem server starts a web server running on whatever computer you run it on. By default, it
will start on port 8808 and will serve gems and their documentation from the default
RubyGems installation directory. Both the port and the gem directory are overridable via
command-line options, using the -p and -d options, respectively.

Once you've started the gem server, if you are running it on your local computer, you can
access the documentation for your installed gems by pointing your web browser to
http://localhost:8808. There, you will see a list of the gems you have installed with their
descriptions and links to their RDoc documentation. Click the rdoc link for Builder—the
result will look something like the following.

L - e
S0 O Ailedlncalkost/Usersidave . gams ruby- 19,0 -p0doc bullosr-2.1. 2 frdacdindexc bl e]

builder-2.1.2 Documentation

Goal

Pravide a simala way to create XML markup and data sTuchees.

Classes
Baider:Xmibarkup

Gererate XML markup rotiation
Buldar; XmiEvarts

Gararate XML pvants (e, SAK-iks]
Motes
& Ar madTdar s sxnl tras cliss b ganarate XML e (e, DOMAika] structuras is also slarand, but aet yat mplemented, Aso,
tha gvarss bultar & cLmently lEang e markup buidar i featuras,

Usage
rquics " cubpgens”
Fequite_gen Builder’, ‘- 2,00
bollder = Hullders :XmiMarkup.now
aml = beilder.persec | |b| bonamei'Tim®j; b.phoos(055-1234") }
sml #=s <pe i ph 30</ phone</ peraan=

Using a Gem
Once a gem is installed, you use require to load it into your program:’

require 'builder'

xml = Builder::XmlMarkup.new(target: STDOUT, indent: 2)
xml.person(type: "programmer") do

xml.name do

xml.first "Dave"

end

xml.location "Texas"

xml.preference("ruby")
end

5. Prior to Ruby 1.9, before you could use a gem in your code, you first had to load a support library called
rubygems. Ruby now integrates that support directly, so this step is no longer needed.

http://localhost:8808
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 15. Ruby and Its World * 220

produces:
<person type="programmer">
<name>
<first>Dave</first>
</name>
<location>Texas</location>
<preference>ruby</preference>
</person>

Gems and Versions

Maybe you first started using Builder a few years ago. Back then the interface was a little
bit different—with versions prior to Build 1.0, you could say this:

xml = Builder::XmlMarkup.new(STDOUT, 2)
xml.person do

name("Dave Thomas")
end

Note that the constructor takes positional parameters. Also, in the do block, we can say just
name(...), whereas the current Builder requires xml.name(...). We could go through our old
code and update it all to work with the new-style Builder—that’s probably the best long-
term solution. But we can also let RubyGems handle the issue for us.

When we asked for a listing of the Builder gems in the repository, we saw that multiple
versions were available:®

$ gem list --details --remote --all builder
*** REMOTE GEMS ***
builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0, 0.1.1)

When we installed Builder previously, we didn’t specify a version, so RubyGems automati-
cally installed the latest. But we can also get it to install a specific version or a version
meeting some given criteria. Let’s install the most recent release of Builder with a version
number less than 1:

$ gem install builder --version '< 1'

Successfully installed builder-0.1.1

1 gem installed

Installing ri documentation for builder-0.1.1...
Installing RDoc documentation for builder-0.1.1...

Have we just overwritten the 2.1.2 release of Builder that we'd previously installed? Let’s
find out by listing our locally installed gems:

$ gem list builder
% L OCAL GEMS *
builder (2.1.2, 0.1.1)

Now that we have both versions installed locally, how do we tell our legacy code to use the
old one while still having our new code use the latest version? It turns out that require auto-
matically loads the latest version of a gem, so the earlier code on page 219 will work fine. If
we want to specify a version number when we load a gem, we have to do a little bit more
work, making it explicit that we're using RubyGem:s:

6. By the time this book reaches you, the list of available versions will likely have changed.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RubyGems Integration ® 221

gem 'builder', '< 1.0'
require 'builder'

xml = Builder::XmlMarkup.new(STDOUT, 2)
xml.person do

name("Dave Thomas")

location("Texas")
end

The magic is the gem line, which says, “When looking for the Builder gem, consider only
those versions less than 1.0.” The subsequent require honors this, so the code loads the correct
version of Builder and runs. The "< 1.0" part of the gem line is a version predicate. The
numbers that follow are of the form major.minor.patch_level. The various predicates that
RubyGems supports are:

Operator Description
= Exact version match. Major, minor, and patch level must be identical.
= Any version that is not the one specified.

> Any version that is greater (even at the patch level) than the one specified.

< Any version that is less than the one specified.

>= Any version greater than or equal to the specified version.

<= Any version less than or equal to the specified version.

~> “Boxed” version operator. Version must be greater than or equal to the specified

version and less than the specified version after having its minor version number
increased by 1. This is to avoid API incompatibilities between minor version
releases.

Table 7—Version operators

You can specify multiple version predicates, so the following is valid:

gem 'builder', '> 0.1', '< 0.1.5'

Unfortunately, after all this work, there’s a problem. Older versions of Builder don't run
under 1.9 anyway. You can still run this code in Ruby 1.8, but you'd have to update your
code to use the new-style Builder if you want to use Ruby 1.9.

Gems Can Be More Than Libraries

As well as installing libraries that can be used inside your application code, RubyGems can
also install utility programs that you can invoke from the command line. Often these utilities
are wrappers around the libraries included in the gem. For example, Marcel Molina’s AWS:S3
gem is a library that gives you programmatic access to Amazon’s S3 storage facility. As well
as the library itself, Marcel provided a command-line utility, s3sh, which lets you interact
with your S3 assets. When you install the gem, s3sh is automatically loaded into the same
bin/ directory that holds the Ruby interpreter.

There’s a small problem with these installed utilities. Although gems supports versioning
of libraries, it does not version command-line utilities. With these, it’s “last one in wins.”

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 15. Ruby and Its World ® 222

15.6 The Rake Build Tool

As well as the Builder gem, Jim Weirich wrote an incredibly useful utility program called
Rake. Prior to Ruby 1.9, you had to install Rake as a separate gem, but it is now included in
the base Ruby installation.

Rake was initially implemented as a Ruby version of Make, the common build utility.
However, calling Rake a build utility is to miss its true power. Really, Rake is an automation
tool—it’s a way of putting all those tasks that you perform in a project into one neat and
tidy place.

Let’s start with a trivial example. As you edit files, you often accumulate backup files in your
working directories. On Unix systems, these files often have the same name as the original
files, but with a tilde character appended. On Windows boxes, the files often have a .bak
extension.

We could write a trivial Ruby program that deletes these files. For a Unix box, it might look
something like this:

require 'fileutils'
files = Dir['*~']
FileUtils::rm files, verbose: true

The FileUtils module defines methods for manipulating files and directories (see the description
in the library section on page 757). Our code uses its rm method. We use the Dir class to return
a list of filenames matching the given pattern and pass that list to rm.

Let’s package this code as a Rake task—a chunk of code that Rake can execute for us.

By default, Rake searches the current directory (and its parents) for a file called Rakefile. This
file contains definitions for the tasks that Rake can run.

So, put the following code into a file called Rakefile:

desc "Remove files whose names end with a tilde"
task :delete unix backups do

files = Dir['*~"]

rm(files, verbose: true) unless files.empty?
end

Although it doesn’t have an .rb extension, this is actually just a file of Ruby code. Rake defines
an environment containing methods such as desc and task and then executes the Rakefile.

The desc method provides a single line of documentation for the task that follows it. The task
method defines a Rake task that can be executed from the command line. The parameter is
the name of the task (a symbol), and the block that follows is the code to be executed. Here
we can just use rm—all the methods in FileUtils are automatically available inside Rake files.

We can invoke this task from the command line:

$ rake delete_unix_backups
(in /Users/dave/BS2/titles/ruby4/Book/code/rake)
rm entry~

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The Rake Build Tool * 223

The first line shows us the name of the directory where Rake found the Rakefile (remember
that this might be in a directory above our current working directory). The next line is the
output of the rm method, in this case showing it deleted the single file entry~.

OK, now let’s write a second task in the same Rakefile. This one deletes Windows backup
files.

desc "Remove files with a .bak extension"
task :delete windows_backups do

files = Dir['*.bak']

rm(files, verbose: true) unless files.empty?
end

We can run this with rake delete_windows_backups.

But let’s say that our application could be used on both platforms, and we wanted to let our
users delete backup files on either. We could write a combined task, but Rake gives us a
better way —it lets us compose tasks. Here, for example, is a new task:

desc "Remove Unix and Windows backup files"

task :delete backups => [:delete unix backups, :delete windows backups] do
puts "All backups deleted"

end

The task’s name is delete_backups, and it depends on two other tasks. This isn’t some special
Rake syntax: we're simply passing the task method a Ruby hash containing a single entry
whose key is the task name and whose value is the list of antecedent tasks. This causes Rake
to execute the two platform-specific tasks before executing the delete_backups task:

$ rake delete_backups
rm entry~

rm index.bak list.bak
All backups deleted

Our current Rakefile contains some duplication between the Unix and Windows deletion
tasks. As it is just Ruby code, we can simply define a Ruby method to eliminate this:

def delete(pattern)

files = Dir[pattern]

rm(files, verbose: true) unless files.empty?
end

desc "Remove files whose names end with a tilde"
task :delete unix_backups do

delete "*~"
end

desc "Remove files with a .bak extension"
task :delete windows_backups do

delete "*.bak"
end

desc "Remove Unix and Windows backup files"

task :delete backups => [:delete_unix backups, :delete windows backups] do
puts "All backups deleted"

end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

15.7

Chapter 15. Ruby and Its World * 224

If a Rake task is named default, it will be executed if you invoke Rake with no parameters.

You can find the tasks implemented by a Rakefile (or, more accurately, the tasks for which
there is a description) using this:

$ rake -T

(in /Users/dave/BS2/titles/ruby4/Book/code/rake)

rake delete backups # Remove Unix and Windows backup files

rake delete unix_ backups # Remove files whose names end with a tilde

rake delete windows backups # Remove files with a .bak extension

This section only touches on the full power of Rake. It can handle dependencies between
files (for example, rebuilding an executable file if one of the source files has changed), it
knows about running tests and generating documentation, and it can even package gems
for you. Martin Fowler has written a good overview of Rake if you're interested in digging
deeper.” You might also want to investigate Sake,” a tool that makes Rake tasks available no
matter what directory you're in, or Thor,” a tool that makes it easy to write Ruby command-
line tools.

Build Environment

When Ruby is compiled for a particular architecture, all the relevant settings used to build
it (including the architecture of the machine on which it was compiled, compiler options,
source code directory, and so on) are written to the module RbConfig within the library file
rbconfig.rb. After installation, any Ruby program can use this module to get details on how
Ruby was compiled:

require 'rbconfig'

include RbConfig

CONFIG["host"] # => "x86 64-apple-darwinl2.2.0"
CONFIG["libdir"] # => "/Users/dave/.rvm/rubies/ruby-2.0.0-p0/1ib"

Extension libraries use this configuration file in order to compile and link properly on any
given architecture. If you visit the online page for the previous edition of this book at
http://pragprog.com/titles/ruby3 and select the Contents/Extracts tab, you can download a free
chapter on writing extension libraries.

7. http://martinfowler.com/articles/rake.html
8. http://errtheblog.com/posts/60-sake-bomb
9. http://github.com/wycats/thor

http://pragprog.com/titles/ruby3
http://martinfowler.com/articles/rake.html
http://errtheblog.com/posts/60-sake-bomb
http://github.com/wycats/thor
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

16.1

CHAPTER 16

Namespaces, Source Files, and Distribution

As your programs grow (and they all seem to grow over time), you'll find that you'll need
to start organizing your code—simply putting everything into a single huge file becomes
unworkable (and makes it hard to reuse chunks of code in other projects). So, we need to
find a way to split our project into multiple files and then to knit those files together as our
program runs.

There are two major aspects to this organization. The first is internal to your code: how do
you prevent different things with the same name from clashing? The second area is related:
how do you conveniently organize the source files in your project?

Namespaces

We've already encountered a way that Ruby helps you manage the names of things in your
programs. If you define methods or constants in a class, Ruby ensures that their names can
be used only in the context of that class (or its objects, in the case of instance methods):

class Triangle
SIDES = 3
def area
..
end
end

class Square
SIDES = 4
def initialize(side_length)
@side_length = side_length
end
def area
@side_length * @side_length
end
end

puts "A triangle has #{Triangle::SIDES} sides"

sq = Square.new(3)
puts "Area of square = #{sq.area}"

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

16.2

Chapter 16. Namespaces, Source Files, and Distribution * 226

produces:

A triangle has 3 sides
Area of square = 9

Both classes define a constant called SIDES and an instance method area, but these things
don't get confused. You access the instance method via objects created from the class, and
you access the constant by prefixing it with the name of the class followed by a double colon.
The double colon (::) is Ruby’s namespace resolution operator. The thing to the left must be
a class or module, and the thing to the right is a constant defined in that class or module.!

So, putting code inside a module or class is a good way of separating it from other code.
Ruby’s Math module is a good example —it defines constants such as Math::Pl and Math::E and
methods such as Math.sin and Math.cos. You can access these constants and methods via the
Math module object:

Math::E # => 2.718281828459045
Math.sin(Math::PI/6.0) # => 0.49999999999999994

(Modules have another significant use—they implement Ruby’s mixin functionality, which
we discussed Section 5.3, Mixins, on page 75.)

Ruby has an interesting little secret. The names of classes and modules are themselves just
constants.” And that means that if you define classes or modules inside other classes and
modules, the names of those inner classes are just contants that follow the same namespacing
rules as other constants:

module Formatters
class Html
...
end
class Pdf
...
end
end

html writer = Formatters::Html.new

You can nest classes and modules inside other classes and modules to any depth you want
(although it’s rare to see them more than three deep).

So, now we know that we can use classes and modules to partition the names used by our
programs. The second question to answer is, what do we do with the source code?

Organizing Your Source

This section covers two related issues: how do we split our source code into separate files,
and where in the file system do we put those files?

Some languages, such as Java, make this easy. They dictate that each outer-level class should
be in its own file and that file should be named according to the name of the class. Other

1. The thing to the right of the :: can also be a class or module method, but this use is falling out of favor
—using a period makes it clearer that it’s just a regular old method call.

2. Remember that we said that most everything in Ruby is an object. Well, classes and modules are, too.
The name that you use for a class, such as String, is really just a Ruby constant containing the object
representing that class.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Organizing Your Source ® 227

languages, such as Ruby, have no rules relating source files and their content. In Ruby, you're
free to organize your code as you like.

But, in the real world, you'll find that some kind of consistency really helps. It will make it
easier for you to navigate your own projects, and it will also help when you read (or incor-
porate) other people’s code.

So, the Ruby community is gradually adopting a kind of de facto standard. In many ways,
it follows the spirit of the Java model, but without some of the inconveniences suffered by
our Java brethren. Let’s start with the basics.

Small Programs

Small, self-contained scripts can be in a single file. However, if you do this, you won't easily
be able to write automated tests for your program, because the test code won’t be able to
load the file containing your source without the program itself running. So, if you want to
write a small program that also has automated tests, split that program into a trivial driver
that provides the external interface (the command-line part of the code) and one or more
files containing the rest. Your tests can then exercise these separate files without actually
running the main body of your program.

Let’s try this for real. Here’s a simple program that finds anagrams in a dictionary. Feed it
one or more words, and it gives you the anagrams of each. Here’s an example:

$ ruby anagram.rb teaching code
Anagrams of teaching: cheating, teaching
Anagrams of code: code, coed

If we were typing in this program for casual use, we might just enter it into a single file
(perhaps anagram.rb). It would look something like this:’

packaging/anagram.rb
#!/usr/bin/env ruby

require 'optparse'
dictionary = "/usr/share/dict/words"

OptionParser.new do |opts]|

opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|
dictionary = dict

end

opts.on("-h", "--help", "Show this message") do
puts opts
exit

end

3. You might be wondering about the line word.unpack("c*").sort.pack("c*"). This uses the function unpack to
break a string into an array of characters, which are then sorted and packed back into a string.

http://media.pragprog.com/titles/ruby4/code/packaging/anagram.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 16. Namespaces, Source Files, and Distribution * 228

begin
ARGV << "-h" if ARGV.empty?
opts.parse! (ARGV)

rescue OptionParser::ParseError => e
STDERR.puts e.message, "In", opts
exit(-1)

end

end

convert "wombat" into "abmotw". All anagrams share a signature
def signature of(word)

word.unpack("c*").sort.pack("c*")
end

signatures = Hash.new

File.foreach(dictionary) do |line|
word = line.chomp
signature = signature of(word)
(signatures[signature] |[|= []) << word
end

ARGV.each do |word]|
signature = signature of(word)
if signatures[signature]
puts "Anagrams of #{word}: #{signatures[signature].join(', ')}"
else
puts "No anagrams of #{word} in #{dictionary}"
end
end

Then someone asks us for a copy, and we start to feel embarrassed. It has no tests, and it
isn't particularly well packaged.

Looking at the code, there are clearly three sections. The first twenty-five or so lines do option
parsing, the next ten or so lines read and convert the dictionary, and the last few lines look
up each command-line argument and report the result. Let’s split our file into four parts:

® An option parser

¢ A class to hold the lookup table for anagrams

® A class that looks up words given on the command line
¢ A trivial command-line interface

The first three of these are effectively library files, used by the fourth.

Where do we put all these files? The answer is driven by some strong Ruby conventions,
first seen in Minero Aoki’s setup.rb and later enshrined in the RubyGems system. We’ll create
a directory for our project containing (for now) three subdirectories:

anagram/ <- top-level
bin/ <- command-line interface goes here
lib/ <- three library files go here

test/ <- test files go here

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Organizing Your Source ® 229

Now let’s look at the library files. We know we're going to be defining (at least) three classes.
Right now, these classes will be used only inside our command-line program, but it's con-
ceivable that other people might want to include one or more of our libraries in their own
code. This means that we should be polite and not pollute the top-level Ruby namespace
with the names of all our classes and so on. We’ll create just one top-level module, Anagram,
and then place all our classes inside this module. This means that the full name of (say) our
options-parsing class will be Anagram::Options.

This choice informs our decision on where to put the corresponding source files. Because
class Options is inside the module Anagram, it makes sense to put the corresponding file,
options.rb, inside a directory named anagram/ in the lib/ directory. This helps people who read
your code in the future; when they see a name like A::B::C, they know to look for c.rb in the
b/ directory in the a/ directory of your library. So, we can now flesh out our directory structure
with some files:

anagram/
bin/
anagram <- command-line interface
lib/
anagram/
finder.rb
options.rb
runner.rb
test/
. various test files

Let’s start with the option parser. Its job is to take an array of command-line options and
return to us the path to the dictionary file and the list of words to look up as anagrams. The
source, in lib/anagram/options.rb, looks like this: Notice how we define the Options class inside
a top-level Anagram module.

packaging/anagram/lib/anagram/options.rb
require 'optparse'

module Anagram
class Options
DEFAULT DICTIONARY = "/usr/share/dict/words"
attr reader :dictionary, :words to find

def initialize(argv)
@dictionary = DEFAULT DICTIONARY
parse(argv)
@words to find = argv

end

private

def parse(argv)
OptionParser.new do |opts]|
opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|
@dictionary = dict
end

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/lib/anagram/options.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 16. Namespaces, Source Files, and Distribution ® 230

opts.on("-h", "--help", "Show this message") do
puts opts
exit

end

begin

argv = ["-h"] if argv.empty?
opts.parse! (argv)

rescue OptionParser::ParseError => e
STDERR.puts e.message, "\n", opts
exit(-1)

end

end
end
end
end

Let’s write some unit tests. This should be fairly easy, because options.rb is self-contained —
the only dependency is to the standard Ruby OptionParser. We'll use the Test::Unit framework,
extended with the Shoulda gem.* We'll put the source of this test in the file test/test_options.rb:

packaging/anagram/test/test_options.rb

require 'test/unit'

require 'shoulda'

require relative '../lib/anagram/options'

class TestOptions < Test::Unit::TestCase

context "specifying no dictionary" do
should "return default" do
opts = Anagram::0ptions.new(["someword"])

assert equal Anagram::Options::DEFAULT DICTIONARY, opts.dictionary
end

end

context "specifying a dictionary" do
should "return it" do

opts = Anagram::Options.new(["-d", "mydict", "someword"]l)
assert equal "mydict", opts.dictionary
end

end

context "specifying words and no dictionary" do
should "return the words" do
opts = Anagram::0Options.new(["wordl", "word2"])
assert equal ["wordl", "word2"], opts.words to find
end

end
context "specifying words and a dictionary" do

should "return the words" do
opts = Anagram::0Options.new(["-d", "mydict", "wordl", "word2"])

4. We talk about Shoulda in the Unit Testing chapter on page 186.

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/test/test_options.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Organizing Your Source ® 231

assert equal ["wordl", "word2"], opts.words to find
end
end
end

The line to note in this file is as follows:

require relative '../lib/anagram/options'

This is where we load the source of the Options class we just wrote. We use require_relative, as
it always loads from a path relative to the directory of the file that invokes it.

$ ruby test/test_options.rb
Run options:
Running tests:

Finished tests in 0.010588s, 377.7862 tests/s, 377.7862 assertions/s.
4 tests, 4 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

The finder code (in lib/anagram/finder.rb) is modified slightly from the original version. To
make it easier to test, we'll have the default constructor take a list of words, rather than a
filename. We'll then provide an additional factory method, from_file, that takes a filename
and constructs a new Finder from that file’s contents:

packaging/anagram/lib/anagram/finder.rb
module Anagram
class Finder

def self.from file(file name)
new(File.readlines(file name))
end

def initialize(dictionary words)
@signatures = Hash.new
dictionary words.each do |line|
word = line.chomp
signature = Finder.signature_ of(word)
(@signatures[signature] ||= []) << word
end
end

def lookup(word)
signature = Finder.signature_of(word)
@signatures[signature]

end

def self.signature of(word)
word.unpack("c*").sort.pack("c*")
end
end
end

Again, we embed the Finder class inside the top-level Anagram module. And, again, this code
is self-contained, allowing us to write some simple unit tests:

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/lib/anagram/finder.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 16. Namespaces, Source Files, and Distribution * 232

packaging/anagram/test/test_finder.rb

require 'test/unit'

require 'shoulda’

require relative '../lib/anagram/finder'

class TestFinder < Test::Unit::TestCase

context "signature" do
{ "cat" => "act", "act" => "act", "wombat" => "abmotw" }.each do
|word, signature]|
should "be #{signature} for #{word}" do
assert _equal signature, Anagram::Finder.signature of(word)
end
end
end

context "lookup" do
setup do
@finder = Anagram::Finder.new(["cat", "wombat"])
end

should "return word if word given" do
assert equal ["cat"], @finder.lookup("cat")
end

should "return word if anagram given" do
assert equal ["cat"], @finder.lookup("act")
assert equal ["cat"], @finder.lookup("tca")
end

should "return nil if no word matches anagram" do
assert nil @finder.lookup("wibble")
end
end

end

These go in test/test finder.rb:

$ ruby test/test_finder.rb
Run options:
Running tests:

Finished tests in 0.009453s, 634.7191 tests/s, 740.5057 assertions/s.
6 tests, 7 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86 64-darwinl2.2.0]

We now have all the support code in place. We just need to run it. We’ll make the command-
line interface —the thing the end user actually executes—really thin. It’s in the bin/ directory
in a file called anagram (no .rb extension, because that would be unusual in a command).’

5. If you're on Windows, you might want to wrap the invocation of this in a .cmd file.

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/test/test_finder.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Distributing and Installing Your Code * 233

packaging/anagram/bin/anagram
#! /usr/local/rubybook/bin/ruby
require ‘'anagram/runner’

runner = Anagram: :Runner.new(ARGV)
runner.run

The code that this script invokes (lib/anagram/runner.rb) knits our other libraries together:

packaging/anagram/lib/anagram/runner.rb
require relative 'finder'
require relative 'options'

module Anagram
class Runner
def initialize(argv)
@options = Options.new(argv)
end

def run
finder = Finder.from file(@options.dictionary)
@options.words to find.each do |word|
anagrams = finder.lookup(word)
if anagrams
puts "Anagrams of #{word}: #{anagrams.join(', ')}"

else
puts "No anagrams of #{word} in #{@options.dictionary}"
end
end
end
end

end

In this case, the two libraries finder and options are in the same directory as the runner, so
require_relative finds them perfectly.

Now that all our files are in place, we can run our program from the command line:

$ ruby -I lib bin/anagram teaching code
Anagrams of teaching: cheating, teaching
Anagrams of code: code, coed

There’s nothing like a cheating coed teaching code.

16.3 Distributing and Installing Your Code

Now that we have our code a little tidier, it would be nice to be able to distribute it to others.
We could just zip or tar it up and send them our files, but then they’d have to run the code
the way we do, remembering to add the correct -l lib options and so on. They’d also have
some problems if they wanted to reuse one of our library files—it would be sitting in some
random directory on their hard drive, not in a standard location used by Ruby. Instead,
we're looking for a way to take our little application and install it in a standard way.

Now, Ruby already has a standard installation structure on your computer. When Ruby is
installed, it puts its commands (ruby, ri, irb, and so on) into a directory of binary files. It puts

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/bin/anagram
http://media.pragprog.com/titles/ruby4/code/packaging/anagram/lib/anagram/runner.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 16. Namespaces, Source Files, and Distribution ® 234

its libraries into another directory tree and documentation somewhere else. So, one option
would be to write an installation script that you distribute with your code that copies com-
ponents of your application to the appropriate directories on the system that’s installing it.

Being a Good Packaging Citizen

So, I've ignored some stuff that you'd want to do before distributing your code to the world.
Your distributed directory tree really should have a README file, outlining what it does and
probably containing a copyright statement; an INSTALL file, giving installation instructions;
and a LICENSE file, giving the license it is distributed under.

You'll probably want to distribute some documentation, too. This would go in a directory
called doc/, parallel with the bin and lib directories.

You might also want to distribute native C-language extensions with your library. These
extensions would go into your project’s ext/ directory.

Using RubyGems

The RubyGems package management system (which is also just called Gems) has become
the standard for distributing and managing Ruby code packages. As of Ruby 1.9, it comes
bundled with Ruby itself.’

RubyGems is also a great way to package your own code. If you want to make your code
available to the world, RubyGems is the way to go. Even if you're just sending code to a few
friends or within your company, RubyGems gives you dependency and installation manage-
ment—one day you'll be grateful for that.

RubyGems needs to know information about your project that isn't contained in the directory
structure. Instead, you have to write a short RubyGems specification: a GemSpec. Create
this in a separate file named project-name.gemspec in the top-level directory of your application
(in our case, the file is anagram.gemspec):

packaging/anagram/anagram.gemspec
Gem: :Specification.new do |s|

S.name = "anagram"
S.summary = "Find anagrams of words supplied on the command line"
s.description = File.read(File.join(File.dirname(FILE), 'README'))
s.requirements =
['An installed dictionary (most Unix systems have one)' 1]
s.version = "0.0.1"
s.author = "Dave Thomas"
s.email = "dave@pragprog.com"
s.homepage = "http://pragdave.pragprog.com"
s.platform = Gem::Platform: :RUBY
s.required ruby version = '>=1.9'
s.files = Dir['*k/*%]
s.executables = ['anagram']
s.test files = Dir["test/test*.rb"]
s.has_rdoc = false
end

6. Prior to RubyGems, folks often distibuted a tool called setup.rb with their libraries. This would install
the library into the standard Ruby directory structure on a user’s machine.

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/anagram.gemspec
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Distributing and Installing Your Code * 235

The first line of the spec gives our gem a name. This is important—it will be used as part of
the package name, and it will appear as the name of the gem when installed. Although it
can be mixed case, we find that confusing, so do our poor brains a favor and use lowercase
for gem names.

The version string is significant, because RubyGems will use it both for package naming and
for dependency management. Stick to the x.y.z format.”

The platform field tells RubyGems that (in this case) our gem is pure Ruby code. It’s also
possible to package (for example) Windows .exe files inside a gem, in which case you'd use
Gem::Platform::Win32.

The next line is also important (and oft-forgotten by package developers). Because we use
require_relative, our gem will run only with Ruby 1.9 and newer.

We then tell RubyGems which files to include when creating the gem package. Here we’ve
been lazy and included everything. You can be more specific.

The s.executables line tells RubyGems to install the anagram command-line script when the
gem gets installed on a user’s machine.

To save space, we haven't added RDoc documentation comments to our source files (RDoc
is described in Chapter 19, Documenting Ruby, on page 263). The last line of the spec tells
RubyGems not to try to extract documentation when the gem is installed.

Obviously I've skipped a lot of details here. A full description of GemSpecs is available
online,’ along with other documents on RubyGems.”

Packaging Your RubyGem

Once the gem specification is complete, you'll want to create the packaged .gem file for dis-
tribution. This is as easy as navigating to the top level of your project and typing this:

$ gem build anagram.gemspec
WARNING: no rubyforge project specified
Successfully built RubyGem
Name: anagram
Version: 0.0.1
File: anagram-0.0.1.gem

You'll find you now have a file called anagram-0.0.1.gem.

$ 1s *gem
anagram-0.0.1.gem

You can install it:

$ sudo gem install pkg/anagram-0.0.1.gem
Successfully installed anagram-0.0.1
1 gem installed

7. And read http://www.rubygems.org/read/chapter/7 for information on what the numbers mean.
8. http://www.rubygems.org/read/book/4
9. http://www.rubygems.org/

http://www.rubygems.org/read/chapter/7
http://www.rubygems.org/read/book/4
http://www.rubygems.org/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 16. Namespaces, Source Files, and Distribution * 236

And check to see that it is there:

$ gem list anagram -d

k% | OCAL GEMS *

anagram (0.0.1)
Author: Dave Thomas
Homepage: http://pragdave.pragprog.com
Installed at: /usr/local/lib/ruby/gems/1.9.0

Find anagrams of words supplied on the command line

Now you can send your .gem file to friends and colleagues or share it from a server. Or, you
could go one better and share it from a RubyGems server.

If you have RubyGems installed on your local box, you can share them over the network to
others. Simply run this:

$ gem server
Server started at http://[::ffff:0.0.0.0]:8808
Server started at http://0.0.0.0:8808

This starts a server (by default on port 8808, but the --port option overrides that). Other people
can connect to your server to list and retrieve RubyGems:

$ gem list --remote --source http://dave.local:8808
k REMOTE GEMS *

anagram (0.0.1)

builder (2.1.2, 0.1.1)

This is particularly useful in a corporate environment.

You can speed up the serving of gems by creating a static index—see the help for gem gener-
ate_index for details.

Serving Public RubyGems

RubyGems.org (http://rubygems.org) has become the main repository for public Ruby libraries
and projects. And, if you create a RubyGems.org account, you can push your .gem file to
their public servers.

$ gem push anagram-0.0.1.gem

Enter your RubyGems.org credentials.

Email: dave@pragprog.com

Password:

Pushing gem to RubyGems.org...

Successfully registered gem: anagram (0.0.1)

And, at that point, any Ruby user in the world can do this:

$ gem search -r anagram
%k REMOTE GEMS ***
anagram (0.0.1)

and, even better, can do this:

$ gem install anagram

http://rubygems.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Distributing and Installing Your Code * 237

Adding Even More Automation

The Jeweler library™ can create a new project skeleton that follows the layout guidelines in
this chapter. It also provides a set of Rake tasks that will help create and manage your project
as a gem.

If you're a Rails user, you'll have come across bundler, a utility that manages the gems used
by your application. Bundler is more general than this: it can be used to manage the gems
used by any piece of Ruby code.

Some folks like the extra features of these utilities, while others prefer the leaner “roll-your-
own” approach. Whatever route you take, taking the time to package your applications and
libraries will pay you back many times over.

See You on GitHub

Finally, if you're developing a Ruby application or library that you'll be sharing, you'll
probably want to store it on GitHub.'" Although it started as a public Git repository, GitHub
is now a community in its own right. It's a home away from home for many in the Ruby
community.

10. http://github.com/technicalpickles/jeweler
11. http://github.com

http://github.com/technicalpickles/jeweler
http://github.com
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 17

Character Encoding

Prior to Ruby 1.9, Ruby programs were basically written using the ASCII character encoding.
You could always override this with the -K command-line option, but this led to inconsistencies
when manipulating strings and doing file I/O.

Ruby 1.9 changed all this. Ruby now supports the idea of character encodings. And, what’s
more, these encodings can be applied relatively independently to your program source files,
to objects in your running programs, and to the interpretation of I/O streams.

Before delving into the details, let’s spend a few minutes thinking about why we need to
separate the encodings of source files, variables, and I/O streams. Let’s imagine Yui is a
developer in Japan who wants to code in her native language. Her editor lets her write code
using Shift JIS (SJIS), a Japanese character encoding, so she writes her variable names using
katakana and kanji characters. But, by default, Ruby assumes that source files are written in
ASCII, and the SJIS characters would not be recognized as such. However, by setting the
encoding to be used when compiling the source file, Ruby can now parse her program.

She converts her program into a gem, and users around the world try it. Dan, in the United
States, doesn’t read Japanese, so the content of her source files makes no sense to him.
However, because the source files carry their encoding around with them, there’s no problem;
his Ruby happily compiles her code. But Dan wants to test her code against a file that contains
regular old ASCII characters. That’s no problem, because the file encoding is determined by
Dan’s locale, not by the encoding of the Ruby source. Similarly, Sophie in Paris uses the
same gem, but her data is encoded in ISO-8859-1 (which is basically ASCII plus a useful
subset of accented European characters in character positions above 127). Again, no problem.

Back in Japan, Yui has a new feature to add to her library. Users want to create short PDF
summaries of the data she reads, but the PDF-writing library she’s using supports only ISO-
8859-1 characters. So, regardless of the encoding of the source code of her program and the
files she reads, she needs to be able to create 8859-1 strings at runtime. Again, we need to
be able to decouple the encoding of individual objects from the encoding of everything else.

If this sounds complex, well...it is. But the good news is that the Ruby team spent a long time
thinking up ways to make it all relatively easy to use when you're writing code. In this section,
we'll look at how to work with the various encodings, and I'll try to list some conventions
that will make your code work in the brave new multinational world.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

17.1

17.2

Chapter 17. Character Encoding * 240

Encodings

At the heart of the Ruby encoding system is the new Encoding class.' Objects of class Encoding
each represent a different character encoding. The Encoding.list method returns a list of the
built-in encodings, and the Encoding.aliases method returns a hash where the keys are aliases
and the values are the corresponding base encoding. We can use these two methods to build
a table of known encoding names:

encoding/list_encodings.rb
encodings = Encoding
Llist
.each.with object({}) do |enc, full list|
full list[enc.name] = [enc.name]
end

Encoding.aliases.each do |alias_name, base name|
fail "#{base name} #{alias name}" unless encodings[base name]
encodings[base name] << alias name

end

puts(encodings
.values
.sort_by {|base name, *| base name.downcase}
.map do |base name, *rest|
if rest.empty?
base _name
else
"#{base name} (#{rest.join(', ')})"
end
end)

Table 8, Encodings and their aliases, on page 241 shows the output, wrapped into columns.

However, that’s not the full story. Encodings in Ruby can be dynamically loaded —Ruby
actually comes with more encodings than those shown in the output from this code.

Strings, regular expressions, symbols, I/O streams, and program source files are all associated
with one of these encoding objects.
2

Encodings commonly used in Ruby programs include ASCII (7-bit characters), ASCII-8BIT,
UTF-8, and Shift JIS.

Source Files

First and foremost, there’s a simple rule: if you only ever use 7-bit ASCII characters in your
source, then the source file encoding is irrelevant. So, the simplest way to write Ruby source
files that just work everywhere is to stick to boring old ASCII.

1. For anice, easy read on encodings, charcter sets, and Unicode, you could take a look at Joel Spolsky’s
2003 article on the Web at http://www.joelonsoftware.com/articles/Unicode.html.

2. Thereisn't actually a character encoding called ASCII-8BIT. It’s a Ruby fantasy but a useful one. We’ll
talk about it shortly.

http://media.pragprog.com/titles/ruby4/code/encoding/list_encodings.rb
http://www.joelonsoftware.com/articles/Unicode.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ASCII-8BIT (BINARY)
Big5-UAO

CP51932

CP855

CP951

EUC-JP-2004 (EUC-JISX0213)
eucJP-ms (euc-jp-ms)
GB1988

IBM437 (CP437)

IBM852

IBM860 (CP860)

IBM863 (CP863)

IBM866 (CP866)
1SO-2022-JP-2 (1S02022-JP2)
1SO-8859-10 (1ISO8859-10)
1SO-8859-14 (1ISO8859-14)
1SO-8859-2 (1SO8859-2)
1SO-8859-5 (ISO8859-5)
1SO-8859-8 (ISO8859-8)
KOI8-U

macCyrillic

MacJapanese (MacJapan)
macThai

Shift_JIS

SJIS-SoftBank

TIS-620

UTF-16BE (UCS-2BE)
UTF-32BE (UCS-4BE)
UTF-8 (CP65001)

UTF8-MAC (UTF-8-MAC, UTF-8-HFS)

Windows-1251 (CP1251)
Windows-1254 (CP1254)
Windows-1257 (CP1257)
Windows-874 (CP874)

Big5

CP50220

CP850 (IBM850)

CP949

Emacs-Mule

EUC-KR (eucKR)

GB12345

GB2312 (EUC-CN, eucCN)
IBM737 (CP737)

IBM855

IBM861 (CP861)

IBM864 (CP864)

1BM869 (CP869)
1SO-2022-JP-KDDI
1SO-8859-11 (1ISO8859-11)
1SO-8859-15 (1ISO8859-15)
1SO-8859-3 (1ISO8859-3)
1SO-8859-6 (1508859-6)
1SO-8859-9 (1508859-9)
macCentEuro

macGreek

macRoman

macTurkish
SJIS-DoCoMo
stateless-1S0-2022-JP

US-ASCII (ASCII, ANSI_X3.4-1968, 646)

UTF-16LE

UTF-32LE (UCS-4LE)
UTF8-DoCoMo
UTF8-SoftBank
Windows-1252 (CP1252)
Windows-1255 (CP1255)
Windows-1258 (CP1258)

Table 8—Encodings and their aliases

Source Files ® 241

Big5-HKSCS (Big5-HKSCS:2008)
CP50221

CP852

CP950

EUC-JP (eucJP)

EUC-TW (eucTW)

GB18030

GBK (CP936)

IBM775 (CP775)

IBM857 (CP857)

IBM862 (CP862
IBM865 (CP865.
1SO-2022-JP (1S02022-JP)
1SO-8859-1 (ISO8859-1)
1SO-8859-13 (1ISO8859-13)
1SO-8859-16 (1ISO8859-16)
1SO-8859-4 (1IS08859-4)
1SO-8859-7 (ISO8859-7)
KOI8-R (CP878)
macCroatian

)
)

maclceland

macRomania

macUkraine

SJIS-KDDI
stateless-1S0-2022-JP-KDDI
UTF-16

UTF-32

UTF-7 (CP65000)
UTF8-KDDI

Windows-1250 (CP1250)
Windows-1253 (CP1253)
Windows-1256 (CP1256)
Windows-31J (CP932, csWindows31J, SJIS, PCK)

However, once a source file contains a byte whose top bit is set, you’ve just left the comfortable
world of ASCII and entered the wild and wacky nightmare of character encodings. Here’s
how it works.

If your source files are not written using 7-bit ASCIL, you probably want to tell Ruby about
it. Because the encoding is an attribute of the source file, and not anything to do with the
environment where the file is used, Ruby has a way of setting the encoding on a file-by-file
basis using a new magic comment. If the first line of a file’ is a comment (or the second line if
the first line is a #! shebang line), Ruby scans it looking for the string coding:. If it finds it,
Ruby then skips any spaces and looks for the (case-insensitive) name of an encoding. Thus,
to specify that a source file is in UTF-8 encoding, you can write this:

coding: wutf-8

As Ruby is just scanning for coding:, you could also write the following.

3. Or astring passed to eval

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

*Newin2.0¢

Chapter 17. Character Encoding ® 242

encoding: ascii

Emacs users might like the fact that this also works:

-*- encoding: shift jis -*-

(Your favorite editor may also support some kind of flag comment to set a file’s encoding.)
If there’s a shebang line, the encoding comment must be the second line of the file:

#!/usr/local/rubybook/bin/ruby
encoding: wutf-8

Additionally, Ruby detects any files that start with a UTF-8 byte order mark (BOM). If Ruby
sees the byte sequence \xEF\xBB\xBF at the start of a source file, it assumes that file is UTF-8
encoded.

The special constant _ ENCODING__ returns the encoding of the current source file.

Ruby 1.9 vs. Ruby 2.0

In Ruby 1.9, the default source file encoding is US-ASCII. If your source files contain any
characters with byte value greater than 127, you'll need to tell Ruby the encoding of the file,
or Ruby will report an error, probably saying something like “invalid multibyte char.” Here’s
an example where we typed some UTF-8 characters into a Ruby program:

m = 3.14159
puts "m = #{m}"

With Ruby 1.9, you'll get an error unless you add the encoding: utf-8 comment at the top.

In Ruby 2.0, however, the default source file encoding is UTF-8, and the previous program
will run as it stands.

We can verify that Ruby correctly interprets 7t as a single character.

encoding: utf-8

PI = "

puts "The size of a string containing m is #{PI.size}"
produces:

The size of a string containing m is 1

Now, let’s get perverse. The two-byte sequence \xcf\x80 represents 7t in UTF-8 but is not a
valid byte sequence in the SJIS encoding. Let’s see what happens if we tell Ruby that this
same source file is SJIS encoded. (Remember, when we do this, we're not changing the
actual bytes in the string—we're just telling Ruby to interpret them with a different set of
encoding rules.)

encoding: sjis

PI = "

puts "The size of a string containing m is #{PI.size}"
produces:

puts "The size of a string containing m is #{PI.size}"

A

prog.rb:2: invalid multibyte char (Windows-313J)
prog.rb:3: syntax error, unexpected tCONSTANT, expecting end-of-input

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Source Files ® 243

This time, Ruby complains because the file contains byte sequences that are illegal in the
given encoding. And, to make matters even more confusing, the parser swallowed up the
double quote after the 7 character, presumably while trying to build a valid SJIS character.
This led to the second error message, because the word The is now interpreted as program
text.

Source Elements That Have Encodings

String literals are always encoded using the encoding of the source file that contains them,
regardless of the content of the string:

encoding: utf-8
def show _encoding(str)
puts "'#{str}' (size #{str.size}) is #{str.encoding.name}"

end

show_encoding "cat" # latin 'c', 'a', 't'
show_encoding "dog" # greek delta, latin 'o', 'g'
produces:

'cat' (size 3) is UTF-8
'gog' (size 3) is UTF-8

Symbols and regular expression literals that contain only 7-bit characters are encoded using
US-ASCIL Otherwise, they will have the encoding of the file that contains them.

encoding: utf-8
def show encoding(str)
puts "#{str.inspect} is #{str.encoding.name}"
end
show encoding :cat
show encoding :dog

show encoding /cat/
show encoding /dog/

produces:
:cat is US-ASCII
:90g is UTF-8

/cat/ is US-ASCII
/d0g/ is UTF-8

You can create arbitrary Unicode characters in strings and regular expressions using the \u
escape. This has two forms: \uxxxx lets you encode a character using four hex digits, and the
delimited form \u{x... x... x...} lets you specify a variable number of characters, each with a
variable number of hex digits:

encoding: utf-8

"Greek pi: \u03cO0" # => "Greek pi: n"
"Greek pi: \u{3co}" # => "Greek pi: m"
"Greek \u{70 69 3a 20 3cO}" # => "Greek pi: m"

Literals containing a \u sequence will always be encoded UTF-8, regardless of the source file
encoding.

The String#bytes method is a convenient way to inspect the bytes in a string object. Notice
that in the following code, the 16-bit codepoint is converted to a two-byte UTF-8 encoding;:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 17. Character Encoding ® 244

encoding: utf-8
"pi: \u63cO".bytes # => [112, 105, 58, 32, 207, 128]

Eight-Bit Clean Encodings

Ruby supports a virtual encoding called ASCII-8BIT. Despite the ASCII in the name, this is
really intended to be used on data streams that contain binary data (which is why it has an
alias of BINARY}). However, you can also use this as an encoding for source files. If you do,
Ruby interprets all characters with codes below 128 as regular ASCII and all other characters
as valid constituents of variable names. This is basically a neat hack, because it allows you
to compile a file written in an encoding you don’t know —the characters with the high-order
bit set will be assumed to be printable.

encoding: ascii-8bit

n = 3.14159

puts "m = #{m}"

puts "Size of 'm' = #{'m'.size}"

produces:

n = 3.14159
Size of 'm' =2

The last line of output illustrates why ASCII-8BIT is a dangerous encoding for source files.
Because it doesn’t know to use UTF-8 encoding, the e character looks to Ruby like two sep-
arate characters.

Source Encoding Is Per-File

Clearly, a large application will be built from many source files. Some of these files may
come from other people (possibly as libraries or gems). In these cases, you may not have
control over the encoding used in a file.

Ruby supports this by allowing different encodings in the files that make up a project. Each
file starts with the default encoding of US-ASCII. The file’s encoding may then be set with
either a coding: comment or a UTF-8 BOM.

Here’s a file called is0-8859-1.rb. Notice the explicit encoding.

encoding/iso-8859-1.rb
-*- encoding: 150-8859-1 -*-

STRING_ISO = "ol|\351" # |\x6f \x6¢c \xe9

And here’s its UTF-8 counterpart:

encoding/utf.rb
file: utf.rb, encoding: utf-8

STRING_U = "d0g" # |xe2\x88\x82\x6f\x67

Now let’s require both of these files into a third file. Just for the heck of it, let’s declare the
third file to have SJIS encoding:

encoding: sjis

require relative 'iso-8859-1'
require relative 'utf'

http://media.pragprog.com/titles/ruby4/code/encoding/iso-8859-1.rb
http://media.pragprog.com/titles/ruby4/code/encoding/utf.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

17.3

Transcoding ® 245

def show encoding(str)
puts "'#{str.bytes.to a}' (#{str.size} chars, #{str.bytesize} bytes) " +
"has encoding #{str.encoding.name}"
end

show encoding (STRING ISO)
show encoding (STRING U)
show encoding("cat")

produces:

'[111, 108, 233]' (3 chars, 3 bytes) has encoding IS0-8859-1
'[226, 136, 130, 111, 103]' (3 chars, 5 bytes) has encoding UTF-8
'[99, 97, 116]"' (3 chars, 3 bytes) has encoding Windows-31J]

Each file has an independent encoding, and string literals in each retain their own encoding,
even when used in a different file. All the encoding directive does is tell Ruby how to interpret
the characters in the file and what encoding to use on literal strings and regular expressions.
Ruby will never change the actual bytes in a source file when reading them in.

Transcoding

As we’ve already seen, strings, symbols, and regular expressions are now labeled with their
encoding. You can convert a string from one encoding to another using the String#encode
method. For example, we can convert the word olé from UTE-8 to ISO-8859-1:

encoding: utf-8

ole in utf = "olé"

ole in utf.encoding # => #<Encoding:UTF-8>
ole in utf.bytes.to a # => [111, 108, 195, 169]

ole in 8859 = ole in utf.encode("iso-8859-1")
ole in 8859.encoding # => #<Encoding:IS0-8859-1>
ole in 8859.bytes.to a # => [111, 108, 233]

You have to be careful when using encode—if the target encoding doesn’t contain characters
that appear in your source string, Ruby will throw an exception. For example, the 7 character
is available in UTF-8 but not in ISO-8859-1:

encoding: utf-8
pi = "pi = m"
pi.encode("is0-8859-1")
produces:
from prog.rb:3:in “<main>'
prog.rb:3:in “encode': U+03C0 from UTF-8 to IS0-8859-1
(Encoding: :UndefinedConversionError)

You can, however, override this behavior, for example supplying a placeholder character to
use when no direct translation is possible. (See the description of String#encode in the reference
section on page 675 for more details.)

encoding: utf-8
pi = "pi = m"
puts pi.encode("iso0-8859-1", :undef => :replace, :replace => "?7?7")

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

17.4

Chapter 17. Character Encoding ® 246

produces:

pi = ??

Sometimes you’ll have a string containing binary data and you want that data to be inter-
preted as if it had a particular encoding. You can’t use the encode method for this, because
you don’t want to change the byte contents of the string —you're just changing the encoding
associated with those bytes. Use the String#force_encoding method to do this:

encoding: ascii-8bit

str = "\xc3\xa9" # e-acute in UTF-8
str.encoding # => #<Encoding:ASCII-8BIT>
str.force encoding("utf-8")

str.bytes.to_a # => [195, 169]
str.encoding # => #<Encoding:UTF-8>

Finally, you can use encode (with two parameters) to convert between two encodings if your
source string is ASCII-8BIT. This might happen if, for example, you're reading data in
binary mode from a file and choose not to encode it at the time you read it. Here we fake
that out by creating an ASCII-8BIT string that contains an ISO-8859-1 sequence (our old
friend olé). We then convert the string to UTF-8. To do this, we have to tell encode the actual
encoding of the bytes by passing it a second parameter:

encoding: ascii-8bit

original = "ol\xe9" # e-acute in IS0-8859-1
original.bytes.to a # => [111, 108, 233]
original.encoding # => #<Encoding:ASCII-8BIT>

new = original.encode("utf-8", "is0-8859-1")
new.bytes.to_a # => [111, 108, 195, 169]
new.encoding # => #<Encoding:UTF-8>

If you're writing programs that will support multiple encodings, you probably want to read
Section 17.5, Default External Encoding, on page 248 —it will greatly simplify your life.

Input and Output Encoding

Playing around with encodings within a program is all very well, but in most code we’ll
want to read data from and write data to external files. And, often, that data will be in a
particular encoding.

Ruby’s I/O objects support both encoding and transcoding of data. What does this mean?

Every I/O object has an associated external encoding. This is the encoding of the data being
read from or written to the outside world. Through a piece of magic I'll describe later on
page 248, all Ruby programs run with the concept of a default external encoding. This is the
external encoding that will be used by I/O objects unless you override it when you create
the object (for example, by opening a file).

Now, your program may want to operate internally in a different encoding. For example,
some of my files may be encoded with ISO-8859-1, but we want our Ruby program to work
internally using UTF-8. Ruby I/O objects manage this by having an optional associated
internal encoding. If set, then input will be transcoded from the external to the internal
encodings on read operations, and output will be transcoded from internal to external
encoding on write operations.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Input and Output Encoding ® 247

Let’s start with the simple cases. On our OS X box, the default external encoding is UTF-8.
If we don't override it, all our file I/O will therefore also be in UTF-8. We can query the
external encoding of an I/O object using the |0#external_encoding method:

f = File.open("/etc/passwd")

puts "File encoding is #{f.external _encoding}"
line = f.gets

puts "Data encoding is #{line.encoding}"
produces:

File encoding is UTF-8
Data encoding is UTF-8

Notice that the data is tagged with a UTF-8 encoding even though it (presumably) contains
just 7-bit ASCII characters. Only literals in your Ruby source files have the “change encoding
if they contain 8-bit data” rule.

You can force the external encoding associated with an I/O object when you open it—simply
add the name of the encoding, preceded by a colon, to the mode string. Note that this in no
way changes the data that’s read; it simply tags it with the encoding you specify:

f = File.open("/etc/passwd", "r:ascii")

puts "File encoding is #{f.external encoding}"
line = f.gets

puts "Data encoding is #{line.encoding}"

produces:

File encoding is US-ASCII
Data encoding is US-ASCII

You can force Ruby to transcode—change the encoding—of data it reads and writes by
putting two encoding names in the mode string, again with a colon before each. For example,
the file iso-8859-1.txt contains the word olé in ISO-8859-1 encoding, so the e-acute (¢€) character
isencoded by the single byte \xe9. I can view this file’s contents in hex using the od command-
line tool. (Windows users can use the d command in debug to do the same.)

0000000 6f 6Cc e9 Oa
0000004

If we try to read it with our default external encoding of UTF-8, we’ll encounter a problem:

f = File.open("iso-8859-1.txt")
puts f.external encoding.name
line = f.gets

puts line.encoding

puts line

produces:
UTF-8
UTF-8
ol?

The problem is that the binary sequence for the e-acute isn’t the same in ISO-8859-1 and
UTF-8. Ruby just assumed the file contained UTF-8 characters, tagging the string it read
accordingly.

We can tell the program that the file contains ISO-8859-1:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 17. Character Encoding ® 248

f = File.open("iso0-8859-1.txt", "r:iso-8859-1")
puts f.external encoding.name

line = f.gets

puts line.encoding

puts line

produces:
IS0-8859-1
IS0-8859-1
ol?

This doesn’t help us much. The string is now tagged with the correct encoding, but our
operating system is still expecting UTF-8 output.

The solution is to map the ISO-8859-1 to UTF-8 on input:

f = File.open("iso0-8859-1.txt", "r:iso-8859-1:utf-8")
puts f.external encoding.name

line = f.gets

puts line.encoding

puts line

produces:
IS0-8859-1
UTF-8

olé

If you specify two encoding names when opening an I/O object, the first is the external
encoding, and the second is the internal encoding. Data is transcoded from the former to the
latter on reading and the opposite way on writing.

Binary Files

In the old days, we Unix users used to make little snide comments about the way that Win-
dows users had to open binary files using a special binary mode. Well, now the Windows
folks can get their own back. If you want to open a file containing binary data in Ruby, you
must now specify the binary flag, which will automatically select the 8-bit clean ASCII-8BIT
encoding. To make things explicit, you can use “binary” as an alias for the encoding:

f = File.open("iso-8859-1.txt", "rb")

puts "Implicit encoding is #{f.external _encoding.name}"
f = File.open("iso-8859-1.txt", "rb:binary")

puts "Explicit encoding is #{f.external _encoding.name}"
line = f.gets

puts "String encoding is #{line.encoding.name}"

produces:

Implicit encoding is ASCII-8BIT
Explicit encoding is ASCII-8BIT
String encoding is ASCII-8BIT

17.5 Default External Encoding

If you look at the text files on your computer, the chances are that they’ll all use the same
encoding. In the United States, that’ll probably be UTF-8 or ASCIL. In Europe, it might be
UTEF-8 or ISO-8859-x. If you use a Windows box, you may be using a different set of encodings

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

17.6

Encoding Compatibility ® 249

(use the console chcp command to find your current code page). But whatever encoding you
use, the chances are good that you'll stick with it for the majority of your work.

On Unix-like boxes, you'll probably find you have the LANG environment variable set. On
one of our OS X boxes, it has the value en_US.UTF-8

This says that we're using the English language in the U.S. territory and the default code set
is UTF-8. On startup, Ruby looks for this environment variable and, if present, sets the default
external encoding from the code set component. Thus, on this box, Ruby 1.9 programs run
with a default external encoding of UTF-8. If instead we were in Japan and the LANG variable
were set to ja_JPsjis, the encoding would be set to Shift JIS. We can look at the default external
encoding by querying the Encoding class. While we're at it, we’ll experiment with different
values in the LANG environment variable:

$ echo $LANG

en_US.UTF-8

$ ruby -e 'p Encoding.default_external.name'

"UTF-8"

$ LANG=ja_JP.sjis ruby -e 'p Encoding.default_external.name’
"Shift JIsS"

$ LANG= ruby -e 'p Encoding.default_external.name'
"US-ASCII"

The encoding set from the environment does not affect the encoding Ruby uses for source
files—it affects only the encoding of data read and written by your programs.

Finally, you can use the -E command-line option (or the long-form --encoding) to set the default
external encoding of your I/O objects, as shown in the following commands.

$ ruby -E utf-8 -e 'p Encoding.default_external.name'

"UTF-8"

$ ruby -E sjis -e 'p Encoding.default_external.name'

"Shift JIS"

$ ruby -E sjis:iso-8859-1 -e 'p Encoding.default_internal.name’
"IS0-8859-1"

Encoding Compatibility

Before Ruby performs operations involving strings or regular expressions, it first has to
check that the operation makes sense. For example, it is valid to perform an equality test
between two strings with different encodings, but it is not valid to append one to the other.
The basic steps in this checking are as follows:

1. If the two objects have the same encoding, the operation is valid.

2. If the two objects each contain only 7-bit characters, the operation is permitted regardless
of the encodings.

3. If the encodings in the two objects are compatible (which we’ll discuss next), the opera-
tion is permitted.

4. Otherwise, an exception is raised.

Let’s say you have a set of text files containing markup. In some of the files, authors used
the sequence … to represent an ellipsis. In other files, which have UTE-8 encoding,
authors used an actual ellipsis character (\u2026). We want to convert both forms to three
periods.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

17.7

Chapter 17. Character Encoding ® 250

We can start off with a simplistic solution:

encoding: utf-8
while line = gets
result = line.gsub(/…/, "...")
.gsub(/\u2026/, "...") # unicode ellipsis
puts result
end

In my environment, the content of files is by default assumed to be UTF-8. Feed our code
ASCII files and UTF-encoded files, and it works just fine. But what happens when we feed
it a file that contains ISO-8859-1 characters?

dots.rb:4:in “gsub': broken UTF-8 string (ArgumentError)

Ruby tried to interpret the input text, which is ISO-8859-1 encoded, as UTF-8. Because the
byte sequences in the file aren’t valid UTF, it failed.

There are three solutions to this problem. The first is to say that it makes no sense to feed
files with both ISO-8859 and UTF-8 encoding to the same program without somehow differ-
entiating them. That’s perfectly true. This approach means we’ll need some command-line
options, liberal use of force_encoding, and probably some kind of code to delegate the pattern
matching to different sets of patterns depending on the encoding of each file.

A second hack is to simply treat both the data and the program as ASCII-8BIT and perform
all the comparisons based on the underlying bytes. This isn’t particularly reliable, but it
might work in some circumstances.

The third solution is to choose a master encoding and to transcode strings into it before doing
the matches. Ruby provides built-in support for this with the default_internal encoding
mechanism.

Default Internal Encoding

By default, Ruby performs no automatic transcoding when reading and writing data.
However, two command-line options allow you to change this.

We’ve already seen the -E option, which sets the default encoding applied to the content of
external files. When you say -E xxx, the default external encoding is set to xxx. However, -E
takes a second option. In the same way that you can give File#open both external and internal
encodings, you can also set a default internal encoding using the option -E external:internal.

Thus, if all your files are written with ISO-8859-1 encoding but you want your program to
have to deal with their content as if it were UTF-8, you can use this:

$ ruby -E iso-8859-1:utf-8

You can specify just an internal encoding by omitting the external option but leaving the
colon:
$ ruby -E :utf-8

Indeed, because UTF-8 is probably the best of the available transcoding targets, Ruby has
the -U command-line option, which sets the internal encoding to UTF-8.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

17.8

Fun with Unicode ® 251

You can query the default internal encoding in your code with the Encoding.default_internal
method. This returns nil if no default internal encoding has been set.

One last note before we leave this section: if you compare two strings with different encodings,
Ruby does not normalize them. Thus, "é" tagged with a UTF-8 encoding will not compare
equal to "é" tagged with ISO-8859-1, because the underlying bytes are different.

Fun with Unicode
As Daniel Berger pointed out,* we can now do fun things with method and variable names:

encoding: utf-8
def) (*args)

args.inject(:+)
end

puts Y 1, 3, 5, 9
produces:

18

Of course, this way can lead to some pretty obscure and hard-to-use code. (For example, is
the summation character in the previous code a real summation, \u2211, or a Greek sigma,
\u03a3?) Just because we can do something doesn’t mean we necessarily should....

4. http://www.oreillynet.com/ruby/blog/2007/10/fun_with unicode 1.html

http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

18.1

CHAPTER 18

Interactive Ruby Shell

Backin Section 14.2, Interactive Ruby, on page 196 we introduced irb, a Ruby module that lets
you enter Ruby programs interactively and see the results immediately. This chapter goes
into more detail on using and customizing irb.

Command Line
irb is run from the command line:

irb <irb-options> <ruby_script> < program arguments>

The command-line options for irb are listed in Table 9, irb Command-line options, on page 255.
Typically, you'll run irb with no options, but if you want to run a script and watch the blow-
by-blow description as it runs, you can provide the name of the Ruby script and any options
for that script.

Once started, irb displays a prompt and waits for you to type Ruby code. irb understands
Ruby, so it knows when statements are incomplete. When this happens, the cursor will be
indented on the next line. (In the examples that follow, we’ll use irb’s default prompt.)

ruby 2.0 > 1 + 2
= 3

ruby 2.0 > 3 +
ruby 2.0 > 4
= 7

You can leave irb by typing exit or quit or by entering an end-of-file character (unless
IGNORE_EOF mode is set).

During an irb session, the work you do is accumulated in irb’s workspace. Variables you
set, methods you define, and classes you create are all remembered and may be used subse-
quently in that session.

ruby 2.0 > def fib up to(n)
ruby 2.0 ?> f1, f2 =1, 1
ruby 2.0 ?> while fl <= n
ruby 2.0 7> puts f1l
ruby 2.0 7> fl, f2 = f2, fl+f2
ruby 2.0 7> end
ruby 2.0 ?> end
1

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 18. Interactive Ruby Shell * 254

ruby 2.0 > fib up to(4)
1

1

2

3

=> nil

Notice the nil return values. These are the results of defining the method and then running
it—our method printed the Fibonacci numbers but then returned nil.

A great use of irb is experimenting with code you've already written. Perhaps you want to
track down a bug, or maybe you just want to play. If you load your program into irb, you
can then create instances of the classes it defines and invoke its methods. For example, the
file code/irb/fibbonacci_sequence.rb contains the following method definition:

irb/fibonacci_sequence.rb
def fibonacci_sequence
Enumerator.new do |generator|
i1, i2 =1, 1
loop do
generator.yield il
il, 12 = i2, il+i2
end
end
end

We can load this into irb and play with the method:

ruby 2.0 > load 'code/irb/fibonacci sequence.rb'
=> True

ruby 2.0 > fibonacci sequence.first(10)

= [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In this example, we use load, rather than require, to include the file in our session. We do this
as a matter of practice: load allows us to load the same file multiple times, so if we find a bug
and edit the file, we could reload it into our irb session.

Tab Completion

If your Ruby installation has readline support, then you can use irb’s completion facility. Once
loaded (and we'll get to how to load it shortly), completion changes the meaning of the Tab
key when typing expressions at the irb prompt. When you press Tab partway through a
word, irb will look for possible completions that make sense at that point. If there is only
one, irb will fill it in automatically. If there’s more than one valid option, irb initially does
nothing. However, if you hit Tab again, it will display the list of valid completions at that
point.

For example, the following snippet shows the middle of an irb session, where you just
assigned a string object to the variable a.

ruby 2.0 > a = "cat"
- "cat"

You now want to try the method String#reverse on this object. You start by typing a.re and
hitting Tab twice.

http://media.pragprog.com/titles/ruby4/code/irb/fibonacci_sequence.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command Line ® 255

Option Description

--back-trace-limit n Displays backtrace information using the top n and last n entries.
The default value is 16.

--context-mode n :CONTEXT_MODE is describd later on page 259.

-d Sets $DEBUG to true (same as ruby -d).

-E enc Same as Ruby’s -E option.

-f Suppresses reading >~/.irbrc.

-h, --help Displays usage information.

- directories Same as Ruby’s -l option.

--inf-ruby-mode Sets up irb to run in inf-ruby-mode under Emacs. Same as --prompt
inf-ruby --noreadline.

--inspect, --noinspect Uses/doesn’t use Object#inspect to format output (--inspect is the
default, unless in math mode).

--irb_debug n Sets internal debug level to n (useful only for irb development).

-m Math mode (fraction and matrix support is available).

--noprompt Does not display a prompt. Same as --prompt null.

--prompt prompt-mode Switches prompt. Predefined prompt modes are null, default,

classic, simple, xmp, and inf-ruby.
--prompt-mode prompt-mode Same as --prompt.

-r module Requires module. Same as ruby -r.

--readline, --noreadline Uses/doesn’t use readline extension module.
--sample-book-mode Same as --prompt simple.

--simple-prompt Same as --prompt simple.

--single-irb Nested irb sessions will all share the same context.
--tracer Displays trace for execution of commands.

-U Same as Ruby’s -U option.

-v, --version Prints the version of irb.

Table 9—irb Command-line options

ruby 2.0 > a.re&<Tab»<Tab»
a.replace a.respond to? a.reverse a.reverse! a.respond to missing?

irb lists all the methods supported by the object in a whose names start with re. We see the
one we want, reverse, and enter the next character of its name, v, followed by the Tab key:

ruby 2.0 > a.rev&<TAB»
ruby 2.0 > a.reverse
- "tac"

irb responds to the Tab key by expanding the name as far as it can go, in this case completing
the word reverse. If we keyed Tab twice at this point, it would show us the current options,
reverse and reverse!. However, because reverse is the one we want, we instead hit Enter, and
the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab completion
works when we try to invoke one of its methods:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 18. Interactive Ruby Shell * 256

ruby 2.0 > class Test

ruby 2.0 ?> def my method
ruby 2.0 7> end

ruby 2.0 ?> end

=> nil

ruby 2.0 > t = Test.new

=> #<Test:0x000001009fc8c8>
ruby 2.0 > t.my<TAB»

ruby 2.0 > t.my method

=> nil

Tab completion is implemented as an extension library. On some systems this is loaded by
default. On others you'll need to load it when you invoke irb from the command line:

$ irb -r irb/completion

You can also load the completion library when irb is running:

ruby 2.0 > require 'irb/completion'

If you use tab completion all the time and if it doesn’t load by default, it’s probably most
convenient to put the require command into your .irbrc file:

Subsessions

irb supports multiple, concurrent sessions. One is always current; the others lie dormant
until activated. Entering the command irb within irb creates a subsession, entering the jobs
command lists all sessions, and entering fg activates a particular dormant session. This
example also illustrates the -r command-line option, which loads in the given file before irb
starts:

dave[ruby4/Book 13:44:16] irb -r ./code/irb/fibonacci sequence.rb
ruby 2.0 > result = fibonacci sequence.first(5)

= [1, 1, 2, 3, 5]

ruby 2.0 > # Created nested irb session

ruby 2.0 > irb

ruby 2.0 > result = %w{ cat dog elk }

=> ["cat", "dog", "elk"l]

ruby 2.0 > result.map(&:upcase)

= ["CAT", "DOG", "ELK"]

ruby 2.0 > jobs

=> #0->irb on main (#<Thread:0x00000100887678>: stop)
#1->irb#1 on main (#<Thread:0x00000100952710>: running)
ruby 2.0 > fg 0

=> #<IRB::Irb: @context=#<IRB::Context:0x000001008ea6d8>,
ruby 2.0 > result

= [1, 1, 2, 3, 5]

ruby 2.0 > fg 1

=> #<IRB::Irb: @context=#<IRB::Context:0x00000100952670>,
ruby 2.0 > result

=> ["cat", "dog", "elk"l]

ruby 2.0 >

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command Line ® 257

Subsessions and Bindings

If you specify an object when you create a subsession, that object becomes the value of self
in that binding. This is a convenient way to experiment with objects. In the following
example, we create a subsession with the string “wombat” as the default object. Methods
with no receiver will be executed by that object.

ruby 2.0 > self

=> main

ruby 2.0 > irb "wombat"
ruby 2.0 > self

=> "wombat"

ruby 2.0 > upcase

=> "WOMBAT"

ruby 2.0 > size

= 06

ruby 2.0 > gsub(/[aeiou]l/, '*')
=> "w¥mb*t"

ruby 2.0 > irb exit

=> #<IRB::Irb: @context=#<IRB::Context:0x000001009dc4d8>,

ruby 2.0 > self

=> main

ruby 2.0 > upcase

NameError: undefined local variable or method ‘“upcase' for main:Object
from (irb):4
from /Users/dave/.rvm/rubies/ruby 2.0/bin/irb:17:in “<main>'

irb is remarkably configurable. You can set configuration options with command-line options
from within an initialization file and while you're inside irb itself.

Initialization File

irb uses an initialization file in which you can set commonly used options or execute any
required Ruby statements. When irb is run, it will try to load an initialization file from one
of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and $irbrc.

Within the initialization file, you may run any arbitrary Ruby code. You can also set config-
uration values. The list of configuration variables is given in irb Configuration Options, on
page 259—the values that can be used in an initialization file are the symbols (starting with
a colon). You use these symbols to set values into the IRB.conf hash. For example, to make
SIMPLE the default prompt mode for all your irb sessions, you could have the following in
your initialization file:

IRB.conf[:PROMPT_MODE] = :SIMPLE

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc object. This
proc will be invoked whenever the irb context is changed and will receive the configuration
for that context as a parameter. You can use this facility to change the configuration
dynamically based on the context. For example, the following .irbrc file sets the prompt so
that only the main prompt shows the irb level, but continuation prompts and the result still
line up:

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 18. Interactive Ruby Shell * 258

IRB.conf[:IRB RC] = lambda do |conf|

leader = " " * conf.irb name.length
conf.prompt i = "#{conf.irb name} --> "
conf.prompt s = leader + ' |-" '
conf.prompt c = leader + ' |-+ '
conf.return_format = leader + " ==> %s\n\n"
puts "Welcome!"

end

An irb session using this .irbrc file looks like the following:
$ irb
Welcome!

irb -->1 + 2
=> 3

irb --> 2 +
\-+ 6
=> 8

Extending irb

Because the things you type into irb are interpreted as Ruby code, you can effectively extend
irb by defining new top-level methods. For example, you may want to time how long certain
things take. You can use the measure method in the Benchmark library to do this, but it’s
more convenient to wrap this in a helper method.

Add the following to your .irbrc file:

def time(&block)
require 'benchmark'
result = nil
timing = Benchmark.measure do
result = block. ()
end
puts "It took: #{timing}"
result
end

The next time you start irb, you'll be able to use this method to get timings:

ruby 2.0 > time { 1 000 000.times { "cat".upcase } }
It took: 0.320000 0.000000 0.320000 (0.323104)
=> 1000000

Interactive Configuration

Most configuration values are also available while you're running irb. The list in irb Conﬁg—
uration Options, on page 259 shows these values as conf.xxx. For example, to change your
prompt back to SIMPLE, you could use the following:

ruby 2.0 > 1 +

ruby 2.0 > 2

= 3

ruby 2.0 > conf.prompt _mode = :SIMPLE
=> :SIMPLE

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command Line ® 259

irb Configuration Options

In the descriptions that follow, a label of the form :XXX signifies a key used in the IRB.conf
hash in an initialization file, and conf.xxx signifies a value that can be set interactively. The
value in square brackets at the end of the description is the option’s default.

:AUTO_INDENT / auto_indent_mode
If true, irb will indent nested structures as you type them. [true]

:BACK_TRACE_LIMIT / back_trace_limit
Displays 7 initial and 7 final lines of backtrace. [16]

:CONTEXT_MODE
Specifies what binding to use for new workspaces: 0—proc at the top level, 1—binding in a
loaded, anonymous file, 2—per thread binding in a loaded file, 3—binding in a top-level
function. [3]

:DEBUG_LEVEL / debug_level
Sets the internal debug level to n. This is useful if you're debugging irb’s lexer. [0]

:IGNORE_EOF / ignore_eof
Specifies the behavior of an end of file received on input. If true, it will be ignored; otherwise,
irb will quit. [false]

:IGNORE_SIGINT / ignore_sigint
If false, “C (Ctrl+c) will quit irb. If true, ~C during input will cancel input and return to the
top level; during execution, ~C will abort the current operation. [true]

:INSPECT_MODE / inspect_mode
Specifies how values will be displayed: true means use inspect, false uses to_s, and nil uses
inspect in nonmath mode and to_s in math mode. [nil]

:IRB_RC
Can be set to a proc object that will be called when an irb session (or subsession) is started.
[nil]

last_value
The last value output by irb. [...]

:LOAD_MODULES / load_modules
A list of modules loaded via the -r command-line option. [[]]

:MATH_MODE / math_mode
If true, irb runs with the mathn library loaded (described in the library section on page 768)
and does not use inspect to display values. [false]

prompt_c

The prompt for a continuing statement (for example, immediately after an if). [depends]
prompt_i

The standard, top-level prompt. [depends]

:PROMPT_MODE / prompt_mode
The style of prompt to display. [:DEFAULT]

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 18. Interactive Ruby Shell * 260

prompt_s
The prompt for a continuing string. [depends]

:PROMPT
See Configuring the Prompt, on page 261. [...]

:RC/rc
If false, do not load an initialization file. [true]

return_format
The format used to display the results of expressions entered interactively. [depends]

:SAVE_HISTORY / save_history
The number of commands to save between irb sessions. [nil]

:SINGLE_IRB
If true, nested irb sessions will all share the same binding; otherwise, a new binding will be

created according to the value of :CONTEXT_MODE. [nil]

thread
A read-only reference to the currently executing Thread object. [current thread]

:USE_LOADER / use_loader
Specifies whether irb’s own file reader method is used with load/require. [false]

:USE_READLINE / use_readline
irb will use the readline library (described in the library section on page 795) if available, unless
this option is set to false, in which case readline will never be used, or nil, in which case

readline will not be used in inf-ruby-mode. [depends]

:USE_TRACER / use_tracer
If true, traces the execution of statements. [false]

:VERBOSE / verbose
In theory, switches on additional tracing when true; in practice, almost no extra tracing

results. [true]
18.2 Commands

At the irb prompt, you can enter any valid Ruby expression and see the results. You can also
use any of the following commands to control the irb session:'
help ClassName, string, or symbol

Displays the ri help for the given thing.

irb(main):001:0> help "String.encoding"

Returns the Encoding object that represents the encoding of obj.

exit, quit, irb_exit, irb_quit
Quits this irb session or subsession. If you’ve used cb to change bindings (detailed in a

moment), exits from this binding mode.

1. For some inexplicable reason, many of these commands have up to nine different aliases. We don’t
bother to show all of them.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Commands ® 261

conf, context, irb_context
Displays current configuration. Modifying the configuration is achieved by invoking
methods of conf. The list in irb Configuration Options, on page 259 shows the available
conf settings.

For example, to set the default prompt to something subservient, you could use this:

irb(main):001:0> conf.prompt i = "Yes, Master? "
=> "Yes, Master? "
Yes, Master? 1 + 2

cb, irb_change_binding <obj»>
Creates and enters a new binding (sometimes called a workspace) that has its own scope
for local variables. If obj is given, it will be used as self in the new binding.

pushb obj, popb
Pushes and pops the current binding.

bindings
Lists the current bindings.

irb_cwws
Prints the object that’s the binding of the current workspace.

irb <obj>
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs
Lists irb subsessions.

fgn,irb_fgn
Switches into the specified irb subsession. n may be any of the following: an irb subses-
sion number, a thread ID, an irb object, or the object that was the value of self when a
subsession was launched.

kill n, irb_kill n
Kills an irb subsession. n may be any of the values as described for irb_fg.

source filename
Loads and executes the given file, displaying the source lines.
Configuring the Prompt

You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts are
stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called MY_PROMPT, you could enter the
following (either directly at an irb prompt or in the .irbrc file):

IRB.conf[:PROMPT][:MY PROMPT] = { # name of prompt mode

:PROMPT I => '-->', # normal prompt

:PROMPT S => '--""', # prompt for continuing strings
:PROMPT C => '--+', # prompt for continuing statement
:RETURN => " ==>%s|n" # format to return value

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 18. Interactive Ruby Shell * 262

Once you've defined a prompt, you have to tell irb to use it. From the command line, you
can use the --prompt option. (Notice how the name of the prompt on the command line is
automatically converted to uppercase, with hyphens changing to underscores.)

$ irb --prompt my-prompt

If you want to use this prompt in all your future irb sessions, you can set it as a configuration
value in your .irbrc file:

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols :PROMPT_|, :PROMPT_S, and :PROMPT_C specify the format for each of the prompt
strings. In a format string, certain % sequences are expanded:

Flag Description

%N Current command.

%m to_s of the main object (self).

%M inspect of the main object (self).

%I Delimiter type. In strings that are continued across a line break, %! will display the
type of delimiter used to begin the string, so you’ll know how to end it. The delimiter
will be oneof *, ', /,], or ".

%ni Indent level. The optional number 7 is used as a width specification to printf, as
printf("%nd").

%nn Current line number (n used as with the indent level).

%% A literal percent sign.

Table 10—irb prompt string substitutions

For instance, the default prompt mode is defined as follows:

IRB.conf[:PROMPT][:DEFAULT] =
:PROMPT_I => "SN(%m) :%03n:%i> ",
:PROMPT_S => "N (%m) :%03n:%1i%l ",
:PROMPT_C => "SN(%m) :%03n:%i* ",
:RETURN => "=> %s\n"

}

Saving Your Session History

If you have readline support in irb (that is, you can hit the up arrow key and irb recalls the
previous command you entered), then you can also configure irb to remember the commands
you enter between sessions. Simply add the following to your .irbrc file:

IRB.conf[:SAVE_HISTORY] = 50 # save last 50 commands

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 19

Documenting Ruby

Ruby comes bundled with RDoc, a tool that extracts and formats documentation that’s

embedded in Ruby source code files. This tool is used to document the built-in Ruby classes

and modules. An increasing number of libraries and extensions are also documented this
1

way.

RDoc does two jobs. First, it analyzes Ruby and C source files, along with some other formats
such as Markdown, looking for information to document.” Second, it takes this information
and converts it into something readable. The following image shows some RDoc output in
a browser window. The overlaid box shows the source program from which this output was
generated.

Homa Classes Methocds Counter
In Flles
. Attributes o Courter

s attr_reader :counte
Otmct def initialize(initial_value=0)

i counter™ @counter = initial_value

end
Methods def inc
ecounter += 1
Public Class Methods end
new(initial_value=0)

Chaus Indux o

Public Instance Methods

incl)
Catsrigst wen 1 s vor 118,

Even though the source contains no internal documentation, RDoc still manages to extract
interesting information from it. We have three panes at the top of the screen showing the
files, classes, and methods for which we have documentation. For class Counter, RDoc shows
us the attributes and methods (including the method signatures). And if we clicked a method
signature, RDoc would pop up a window containing the source code for the corresponding
method.

1. RDocisn't the only Ruby documentation tool. Those who like a more formal, tag-based scheme might
want to look at Yard at http://yardoc.org.
2. RDoc can also document Fortran 77 programs.

*Newin2.0¢

http://yardoc.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 19. Documenting Ruby ® 264

If our source code contains comments, RDoc can use them to spice up the documentation it
produces.

Class: Comnter
Home Clussss Mathods Counter
n P
IergHaMEnts & SETEin ACCUMUMT, WHoss vallie 8 BCCesaed wa e Arbua countar. Caing the
nGramecss this vaiue
Pk # Inplements a simple accumulator, whose
value is accessed via the attribute
Otject # _counter_. Calling the method Counter#tinc
Attributes # increments this value
class Counter
Metods "
countar # The current value of the count
wigd The curmint valie f he co. attr_reader :counter
create a new Counter with the given
initial value
= def initialize(initial_value=a)
Class index ® Public Class Methods €counter = initial value
end
new(initial_values0) # increment the current value of the count
reurio & new Courter with the given inftisl value def inc
ecounter += 1
end
end
Public Instance Methods
IncO
e wi e Lerts o) e Dt 116

Notice how the comments before each element now appear in the RDoc output, reformatted
into HTML. Less obvious is that RDoc has detected hyperlink opportunities in our comments:
in the class-level comment, the reference to Counter#inc is a hyperlink to the method
description, and in the comment for the new method, the reference to class Counter hyperlinks
back to the class documentation. This is a key feature of RDoc: it is designed to be unintrusive
in the Ruby source files and to make up for this by trying to be clever when producing output.

RDoc can also be used to produce documentation that can be read by the ri command-line
utility. For example, if we ask RDoc to document the code in the previous example into ri
format, we can access the documentation from the command line:

$ ri Counter

-- Class: Counter
Implements a simple accumulator, whose value is
accessed via the attribute counter. Calling the
method Counter#inc increments this value.

Class methods:
new

Instance methods:
inc

Attributes:
counter

increment the current value of the count

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 19. Documenting Ruby ® 265

Ruby distributions have the built-in classes and modules (and some libraries) documented
this way.’ Here’s what you see if you type ri Proc:

$ ri Proc

Proc < Object

(from ruby core)

Proc objects are blocks of code that have been bound to a set of local
variables. Once bound, the code may be called in different contexts and still
access those variables.

def gen times(factor)
return Proc.new {|n| n*factor }
end

times3 gen _times(3)
times5 = gen times(5)

times3.call(12) #=> 36
times5.call(5) #=> 25
times3.call(times5.call(4)) #=> 60
Class methods:
new
Instance methods:
===, [], arity, binding, call, curry, hash, inspect, lambda?, parameters,
source location, to proc, to s, yield ==

Many projects include README files, files containing usage notes, Changelogs, and so on. ~ tNewin20:
RDoc automatically finds and formats these. It calls the result a page. You access the list of
available pages from ri using the name of the project and a colon:

$ ri ruby:

Pages in ruby core

ChangelLog
NEWS
README
README . EXT

To read a particular page, add its name after the colon:

$ ri ruby:NEWS
NEWS for Ruby 2.0.0

This document is a list of user visible feature changes made between releases
except for bug fixes.

3. If you're using rvm, you'll need to run rvm docs generate.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 19. Documenting Ruby ® 266

19.1 Adding RDoc to Ruby Code

RDoc parses Ruby source files to extract the major elements (such as classes, modules,
methods, attributes, and so on). You can choose to associate additional documentation with
these by simply adding a comment block before the element in the file.

One of the design goals of RDoc was to leave the source code looking totally natural. In most
cases, there is no need for any special markup in your code to get RDoc to produce decent
looking documentation. For example, comment blocks can be written fairly naturally:

Calculate the minimal-cost path though the graph using Debrinkski's algorithm,
with optimized inverse pruning of isolated leaf nodes.
def calculate path

end

You can also use Ruby’s block-comments by including the documentation in a =begin...=end
block. If you use this (which is not generally done), the =begin line must be flagged with an
rdoc tag to distinguish the block from other styles of documentation.

=begin rdoc

Calculate the minimal-cost path though the graph using Debrinkski's algorithm,
with optimized inverse pruning of isolated leaf nodes.

=end

def calculate path

end

Within a documentation comment, paragraphs are lines that share the left margin. Text
indented past this margin is formatted verbatim.

Nonverbatim text can be marked up. To set individual words in italic, bold, or typewriter
fonts, you can use _word_, *word*, and +word+, respectively. If you want to do this to multiple
words or text containing nonword characters, you can use multiple words, more
words, and <tt>yet more words</tt>. Putting a backslash before inline markup stops it from
being interpreted.

RDoc stops processing comments if it finds a comment line starting with #--. This can be
used to separate external from internal comments or to stop a comment from being associated
with a method, class, attribute, or module. Documenting can be turned back on by starting
a line with the comment #++:

Extract the age and calculate the

date of birth.

#--

FIXME: fails if the birthday falls on February 29th, or if the person

was born before epoch and the installed Ruby doesn't support negative time t
#++

The DOB is returned as a Time object.

#--

But should probably change to use Date.

def get_dob(person)

end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Adding RDoc to Ruby Code * 267

Hyperlinks

Names of classes, source files, and any method names containing an underscore or preceded
by a hash character are automatically hyperlinked from comment text to their description.

In addition, hyperlinks starting with http:, mailto:, ftp:, and www: are recognized. An HTTP
URL that references an external image file is converted into an inline tag. Hyperlinks
starting with link: are assumed to refer to local files whose paths are relative to the --op
directory, where output files are stored.

Hyperlinks can also be of the form label[url], where the label is used in the displayed text and
url is used as the target. If the label contains multiple words, surround it in braces: {two
words}Hurl].

Lists
Lists are typed as indented paragraphs with the following:

® As asterisk (*) or hyphen (-) for bullet lists
¢ A digit followed by a period for numbered lists
® An uppercase or lowercase letter followed by a period for alpha lists

For example, you could produce something like the previous text with this:

Lists are typed as indented paragraphs with
* a * or - (for bullet lists),
* a digit followed by a period for
numbered lists,
* an uppercase or lowercase letter followed
by a period for alpha lists.

H R K W W R

Note how subsequent lines in a list item are indented to line up with the text in the element’s
first line.

Labeled lists (sometimes called description lists) are typed using square brackets for the label:

[cat] Small domestic animal
[+cat+] Command to copy standard input
to standard output

Labeled lists may also be produced by putting a double colon after the label. This sets the
result in tabular form so the descriptions all line up in the output.

cat:: Small domestic animal
+cat+:: Command to copy standard input
to standard output

For both kinds of labeled lists, if the body text starts on the same line as the label, then the
start of that text determines the block indent for the rest of the body. The text may also start
on the line following the label, indented from the start of the label. This is often preferable
if the label is long. Both of the following are valid labeled list entries:

<tt>--output</tt> <i>name [, name]</i>::

specify the name of one or more output files. If multiple
files are present, the first is used as the index.

#

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 19. Documenting Ruby ® 268

<tt>--quiet:</tt>:: do not output the names, sizes, byte counts,

index areas, or bit ratios of units as
they are processed.
Headings

Headings are entered on lines starting with equals signs. The more equals signs, the higher
the level of heading;:

= Level One Heading
== Level Two Heading
and so on...

Rules (horizontal lines) are entered using three or more hyphens:

and so it goes...
-
The next section...

Documentation Modifiers

Method parameter lists are extracted and displayed with the method description. If a method
calls yield, then the parameters passed to yield will also be displayed. For example:

def fred
...
yield line, address

This will be documented as follows:

fred() {|line, address| ... }

You can override this using a comment containing :yields: ... on the same line as the method
definition:

def fred # :yields: index, position
...
yield line, address

which will be documented as follows:

fred() {|index, position| ... }

wyields: is an example of a documentation modifier. These appear immediately after the start
of the document element they are modifying. Other modifiers include the following:

:nodoc: <all>
Don’tinclude this element in the documentation. For classes and modules, the methods,
aliases, constants, and attributes directly within the affected class or module will also
be omitted from the documentation. By default, though, modules and classes within
that class or module will be documented. This is turned off by adding the all modifier.
For example, in the following code, only class SM::Input will be documented:

module SM #:nodoc:
class Input
end

end

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

19.2

Adding RDoc to C Extensions ® 269

module Markup #:nodoc: all
class Output
end

end

:doc:
This forces a method or attribute to be documented even if it wouldn’t otherwise be.
This is useful if, for example, you want to include documentation of a particular private
method.

:notnew:
(Applicable only to the initialize instance method.) Normally RDoc assumes that the
documentation and parameters for #initialize are actually for the corresponding class’s
new method and so fakes out a new method for the class. The :notnew: modifier stops this.
Remember that #initialize is protected, so you won'’t see the documentation unless you
use the -a command-line option.

Other Directives

Comment blocks can contain other directives:

:call-seq: lines...
Text up to the next blank comment line is used as the calling sequence when generating
documentation (overriding the parsing of the method parameter list). A line is considered
blank even if it starts with #. For this one directive, the leading colon is optional.

;include: filename
This includes the contents of the named file at this point. The file will be searched for
in the directories listed by the --include option or in the current directory by default. The
contents of the file will be shifted to have the same indentation as the : at the start of the
sinclude: directive.

:title: text
This sets the title for the document. It’s equivalent to the --titte command-line parameter.
(The command-line parameter overrides any :title: directive in the source.)

:main: name
This is equivalent to the --main command-line parameter, setting the initial page displayed
for this documentation.

:stopdoc: / :startdoc:
This stops and starts adding new documentation elements to the current container. For
example, if a class has a number of constants that you don’t want to document, put a
:stopdoc: before the first and a :startdoc: after the last. If you don't specify a :startdoc: by
the end of the container, this disables documentation for the entire class or module.

:enddoc:
This documents nothing further at the current lexical level.

A larger example of a file documented using RDoc is shown in Section 19.4, Ruby source file
documented with RDoc, on page 272.

Adding RDoc to C Extensions

RDoc understands many of the conventions used when writing extensions to Ruby in C.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 19. Documenting Ruby ® 270

If RDoc sees a C function named Init_Classname, it treats it as a class definition—any C comment
before the Init_ function will be used as the class’s documentation.

The Init_ function is normally used to associate C functions with Ruby method names. For
example, a Cipher extension may define a Ruby method salt=, implemented by the C function
salt_set using a call such as this:

rb_define method(cCipher, "salt=", salt set, 1);

RDoc parses this call, adding the salt= method to the class documentation. RDoc then
searches the C source for the C function salt_set. If this function is preceded by a comment
block, RDoc uses this for the method’s documentation.

This basic scheme works with no effort on your part beyond writing the normal documen-
tation in the comments for functions. However, RDoc cannot discern the calling sequence
for the corresponding Ruby method. In this example, the RDoc output will show a single
argument with the (somewhat meaningless) name “argl.” You can override this using the
call-seq directive in the function’s comment. The lines following call-seq (up to a blank line)
are used to document the calling sequence of the method:

* call-seq:
* cipher.salt = number
* cipher.salt = "string"

* Sets the salt of this cipher to either a binary +number+ or
* bits in +string+.
*/

static VALUE

salt_set(cipher, salt)

If a method returns a meaningful value, it should be documented in the call-seq following
the characters ->:

/*
* call-seq:
* cipher.keylen -> Fixnum or nil
*/

Although RDoc heuristics work well for finding the class and method comments for simple
extensions, they don’t always work for more complex implementations. In these cases, you
can use the directives Document-class: and Document-method: to indicate that a C comment
relates to a given class or method, respectively. The modifiers take the name of the Ruby
class or method that’s being documented:

Document-method: reset

cipher text. Any accumulated output cipher text

*
*
* Clear the current buffer and prepare to add new
*
* 1s also cleared.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

19.3

Running RDoc ® 271

Finally, it is possible in the Init_xxx function to associate a Ruby method with a C function in
a different C source file. RDoc would not find this function without your help: you add a
reference to the file containing the function definition by adding a special comment to the
rb_define_method call. The following example tells RDoc to look in the file md5.c for the function
(and related comment) corresponding to the md5 method:

rb_define _method(cCipher, "md5", gen_md5, -1); /* in md5.c */

A C source file documented using RDoc is shown in Section 19.5, C source file documented
with RDoc, on page 274. Note that the bodies of several internal methods have been elided
to save space.

Running RDoc
You run RDoc from the command line:

$ rdoc <options>” <filenames...>"
Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain collected, before any output is produced.
This allows cross-references between all files to be resolved. If a name is a directory, it is
traversed. If no names are specified, all Ruby files in the current directory (and subdirectories)
are processed.

A typical use may be to generate documentation for a package of Ruby source (such as RDoc
itself):

$ rdoc

This command generates HTML documentation for the files in and below the current
directory. These will be stored in a documentation tree starting in the subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames ending with .rb
and .rbw are assumed to be Ruby source. Filenames ending .c are parsed as C files. .rdoc files
are formatted as RDoc, and .md and .markdown as Markdown. All other files are assumed to
contain just markup (with or without leading # comment markers). If directory names are
passed to RDoc, they are scanned recursively for source files only. To include nonsource
files such as READMEs in the documentation process, their names must be given explicitly on
the command line.

When writing a Ruby library, you often have some source files that implement the public
interface, but the majority are internal and of no interest to the readers of your documentation.
In these cases, construct a .document file in each of your project’s directories. If RDoc enters
a directory containing a .document file, it will process only the files in that directory whose
names match one of the lines in that file. Each line in the file can be a filename, a directory
name, or a wildcard (a file system “glob” pattern). For example, to include all Ruby files
whose names start with main, along with the file constants.rb, you could use a .document file
containing this:

main*.rb
constants.rb

*Newin2.0¢

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

19.4

Chapter 19. Documenting Ruby ® 272

Some project standards ask for documentation in a top-level README file. You may find it
convenient to write this file in RDoc format and then use the :include: directive to incorporate
the README into the documentation for the main class.

Create Documentation for ri
RDoc is also used to create documentation that will be later displayed using ri.
When you run i, it by default looks for documentation in three places:*

® The system documentation directory, which holds the documentation distributed with
Ruby and which is created by the Ruby install process

® The site directory, which contains sitewide documentation added locally
® The user documentation directory, stored under the user’s own home directory
You can find these three directories using ri --list-doc-dirs.

$ ri --list-doc-dirs
/Users/dave/.rvm/rubies/ruby-2.0.0-p0/share/ri/2.0.0/system
/Users/dave/.rvm/rubies/ruby-2.0.0-p0/share/ri/2.0.0/site
/Users/dave/.rdoc

To add documentation to ri, you need to tell RDoc which output directory to use. For your
own use, it’s easiest to use the --ri option, which installs the documentation into ~/.rdoc:

$ rdoc --ri filel.rb file2.rb

If you want to install sitewide documentation, use the --ri-site option:

$ rdoc --ri-site filel.rb file2.rb

The --ri-system option is normally used only to install documentation for Ruby’s built-in
classes and standard libraries. You can regenerate this documentation from the Ruby source
distribution (not from the installed libraries themselves):

$ cd ruby source base/lib
$ rdoc --ri-system

Ruby source file documented with RDoc

This module encapsulates functionality related to the

generation of Fibonacci sequences.

#--

Copyright (c) 2004 Dave Thomas, The Pragmatic Programmers, LLC.
Licensed under the same terms as Ruby. No warranty is provided.
module Fibonacci

Calculate the first count Fibonacci numbers, starting with 1,1.
#

:call-seq:
Fibonacci.sequence(count) -> array
Fibonacci.sequence(count) {|val| ... } -> nil

4. You can override the directory location using the --op option to RDoc and subsequently using the --doc-dir
option with ri.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby source file documented with RDoc ® 273

#
If a block is given, supply successive values to the block and
return +nil+, otherwise return all values as an array.
def Fibonacci.sequence(count, &block)
result, block = setup optional block(block)
generate do |val|
break if count <= 0

count -=1
block[vall]
end
result

end
Calculate the Fibonacci numbers up to and including max .

Fibonacci.upto(max) -> array

#
#
:call-seq:
#
Fibonacci.upto(max) {|val| ... } -> nil

H*

If a block is given, supply successive values to the
block and return +nil+, otherwise return all values as an array.
def Fibonacci.upto(max, &block)
result, block = setup optional block(block)
generate do |val|
break if val > max
block[vall
end
result
end

private

Yield a sequence of Fibonacci numbers to a block.
def Fibonacci.generate
fl, f2=1, 1
loop do
yield f1
f1, f2 = f2, fl+f2
end
end

If a block parameter is given, use it, otherwise accumulate into an
array. Return the result value and the block to use.
def Fibonacci.setup optional block(block)
if block.nil?
[result = [], lambda {|val| result << val }]
else
[nil, block]
end
end
end

report erratum « discuss

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 19. Documenting Ruby ® 274

19.5 Csource file documented with RDoc

#include "ruby.h"
#include "cdjukebox.h"

static VALUE cCDPlayer;

static void cd free(void *p) { ... }
static VALUE cd alloc(VALUE klass) { ... }
static void progress(CDJukebox *rec, int percent) { ... }

/* call-seq:
* CDPlayer.new(unit) -> new cd player

* Assign the newly created CDPlayer to a particular unit
*/
static VALUE cd initialize(VALUE self, VALUE unit) {

int unit id;

CDJukebox *jb;

Data Get Struct(self, CDJukebox, jb);
unit id = NUM2INT(unit);
assign_jukebox(jb, unit id);

return self;

/* call-seq:
player.seek(int disc, int track) -> nil
player.seek(int disc, int track) {|percent| } -> nil

Seek to a given part of the track, invoking the block
with the percent complete as we go.

O R

*/
static VALUE
cd seek(VALUE self, VALUE disc, VALUE track) {
CDJukebox *jb;
Data Get Struct(self, CDJukebox, jb);
jukebox seek(jb, NUM2INT(disc), NUM2INT(track), progress);
return Qnil;

}

/* call-seq:
player.seek time -> Float
*
* Return the average seek time for this unit (in seconds)
*/
static VALUE
cd seek time(VALUE self)
{
double tm;
CDJukebox *jb;
Data Get Struct(self, CDJukebox, jb);
tm = get avg seek time(jb);
return rb_float new(tm);

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

C source file documented with RDoc ® 275

/* Interface to the Spinzalot[http://spinzalot.cd]
* CD Player library.
*/
void Init CDPlayer() {
cCDPlayer = rb _define class("CDPlayer", rb cObject);
rb_define alloc func(cCDPlayer, cd alloc);
rb_define method(cCDPlayer, "initialize", cd initialize, 1);
rb _define method(cCDPlayer, "seek", cd seek, 2);
rb_define method(cCDPlayer, "seek time", cd seek time, 0);

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

20.1

20.2

CHAPTER 20

Ruby and the Web

Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP
daemon, or web server in Ruby, but you can also use Ruby for more usual tasks such as CGI
programming or as a replacement for PHP.

Many options are available for using Ruby to implement web applications, and a single
chapter can’t do them all justice. Instead, we’ll try to touch some of the highlights and point
you toward libraries and resources that can help.

Let’s start with some simple stuff: running Ruby programs as Common Gateway Interface
(CGI) programs.

Writing CGI Scripts

You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate HTML
output, all you need is something like this:

#!/usr/bin/ruby
print "Content-type: text/html\r\n\rin"
print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

Put this script in a CGI directory, mark it as executable, and you’ll be able to access it via
your browser. (If your web server doesn’t automatically add headers, you'll need to add the
response header yourself, as shown in the following code.)

#!/usr/bin/ruby

print "HTTP/1.0 200 OK\r\n"

print "Content-type: text/html\r\n\rin"

print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

However, that’s hacking around at a pretty low level. You'd need to write your own request
parsing, session management, cookie manipulation, output escaping, and so on. Fortunately,
options are available to make this easier.

Using cgi.rb

Class CGI provides support for writing CGI scripts. With it, you can manipulate forms,
cookies, and the environment; maintain stateful sessions; and so on. It’s a fairly large class,
but we'll take a quick look at its capabilities here.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 20. Ruby and the Web * 278

Quoting

When dealing with URLs and HTML code, you must be careful to quote certain characters.
For instance, a slash character (/) has special meaning in a URL, so it must be “escaped” if
it'’s not part of the path name. That is, any / in the query portion of the URL will be translated
to the string %2F and must be translated back to a / for you to use it. Space and ampersand
are also special characters. To handle this, CGl provides the routines CGl.escape and CGl.unescape:

require 'cgi
puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")
produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters:

require 'cgi
puts CGI.escapeHTML("a < 100 && b > 200")
produces:

a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements within a string:

require 'cgi
puts CGI.escapeElement('<hr>Click Here
','A")
produces:

<hr>Click Here

Here only the <a...> element is escaped; other elements are left alone. Each of these methods
has an un- version to restore the original string:

require 'cgi'
puts CGI.unescapeHTML("a < 100 && b > 200")
produces:

a < 100 & b > 200

Query Parameters

HTTP requests from the browser to your application may contain parameters, either passed
as part of the URL or passed as data embedded in the body of the request.

Processing of these parameters is complicated by the fact that a value with a given name
may be returned multiple times in the same request. For example, say we're writing a survey
to find out why folks like Ruby. The HTML for our form looks like the following.

<html>
<head>
<title>Test Form</title>
</head>

<body>
<p>

I like Ruby because:
</p>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Using cgi.rb * 279

<form action="cgi-bin/survey.rb">
<p>
<input type="checkbox" name="reason" value="flexible" />
It's flexible
</p>
<p>
<input type="checkbox" name="reason" value="transparent" />
It's transparent
</p>
<p>
<input type="checkbox" name="reason" value="perlish" />
It's like Perl
</p>
<p>
<input type="checkbox" name="reason" value="fun" />
It's fun
</p>
<p>
Your name: <input type="text" name="name"/>
</p>
<input type="submit"/>
</form>
</body>
</html>

When someone fills in this form, they might check multiple reasons for liking Ruby (as
shown in the following screenshot):

[:iala] Test Form

<« » |E| 4 http:/ localhost/form hemi 0 Coogle
| [l Rendarvousv FOP= Pragmatic Pr.ming ipoff Apple

I like Ruby because:

& It's flexible

Tt's transparent

1 1t's like Perl

It's fun

Your name: [Dave Thomas

N 1

{‘Submin™)

In this case, the form data corresponding to the name reason will have three values, corre-
sponding to the three checked boxes.

Class CGl gives you access to form data in a couple of ways. First, we can just treat the CGI
object as a hash, indexing it with field names and getting back field values.

require 'cgi'

cgi = CGI.new

cgi['name'] # => "Dave Thomas"
cgi['reason'] # => "flexible"

However, this doesn’t work well with the reason field, because we see only one of the three
values. We can ask to see them all by using the CGl#params method. The value returned by
params acts like a hash containing the request parameters. You can both read and write this
hash (the latter allows you to modify the data associated with a request). Note that each of
the values in the hash is actually an array.

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

20.3

Chapter 20. Ruby and the Web * 280

cgi = CGI.new

cgi.params # => {"name"=>["Dave Thomas"], "reason"=>["flexible",
.. "transparent", "fun"]}

cgi.params['name'] # => ["Dave Thomas"]

cgi.params|['reason'] # => ["flexible", "transparent", "fun"]

You can determine whether a particular parameter is present in a request using CGl#has_key?:

require 'cgi'
cgi = CGI.new
cgi.has key?('name') # => true
cgi.has key?('age') # => false

Generating HTML with CGl.rb

CGl contains a huge number of methods that can be used to create HTML —one method per
element. To enable these methods, you must create a CGl object by calling CGl.new, passing
in the required version of HTML. In these examples, we’ll use html4.

To make element nesting easier, these methods take their content as code blocks. The code
blocks should return a String, which will be used as the content for the element.

require 'cgi'
cgi = CGI.new("html4") # add HTML generation methods
cgi.out do
cgi.html do
cgi.head { cgi.title { "This Is a Test"} } +
cgi.body do
cgi.form do
cgi.hr +
cgi.hl { "A Form: " } +
cgi.textarea("get text") +
cgi.br +
cgi.submit
end
end
end
end

Although vaguely interesting, this method of generating HTML is fairly laborious and
probably isn’t used much in practice. Most people seem to write the HTML directly, use a
templating system, or use an application framework, such as Rails. Unfortunately, we don’t
have space here to discuss Rails —take a look at the online documentation at http://rubyonrails.org
—but we can look at templating (including erb, the templating engine used by Rails).

Templating Systems

Templating systems let you separate the presentation and logic of your application. It seems
that just about everyone who writes a web application using Ruby at some point also writes
a templating system; a quick review page written in 2008 by Vidar Hokstad' lists nineteen.
For now, let’s just look at two: Haml and erb/eruby. Also, remember to look at Builder if
you need to generate XHTML or XML.

1. http://www.hokstad.com/mini-reviews-of-19-ruby-template-engines.html

http://rubyonrails.org
http://www.hokstad.com/mini-reviews-of-19-ruby-template-engines.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Templating Systems ® 281

Haml

Haml is a library that generates HTML documents from a template.” Unlike many other
templating systems, Haml uses indentation to indicate nesting (yup, just like Python). For
example, you can represent a in Haml using this:

%ul
%li item one
%li item two

Install Haml using this:

$ gem install haml

The Haml input syntax is rich and powerful, and the example that follows touches on only
a subset of the features. Lines starting with % get converted to HTML tags, nested in the
output according to their indentation in the input. An equals sign means “substitute in the
value of the Ruby code that follows.” A minus sign executes Ruby code but doesn’t substitute
the value in—our example uses that to look over the reasons when constructing the table.

There are many ways of getting values passed in to the template. In this example, we chose
to pass in a hash as the second parameter to render. This results in local variables getting set
as the template is expanded, one variable for each key in the hash:

require 'haml'
engine = Haml::Engine.new(%{
%sbody
#welcome-box
%p= greeting

%P
As of
= Time.now
the reasons you gave were:
%table
Str
%th Reason
%th Rank
- for reason in reasons
Str
%td= reason[:reason name]
%td= reason[:rank]
})
data = {
greeting: 'Hello, Dave Thomas',
reasons: [
{ reason name: 'flexible', rank: '87' },
{ reason name: 'transparent', rank: '76' },
{ reason name: 'fun', rank: '94' },

]
}

puts engine.render(nil, data)

2. http://haml-lang.com/

http://haml-lang.com/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Chapter 20. Ruby and the Web 282

produces:
<body>
<div id='welcome-box'>
<p>Hello, Dave Thomas</p>
</div>
<p>
As of
2013-05-27 12:31:30 -0500
the reasons you gave were:
</p>
<table>
<tr>
<th>Reason</th>
<th>Rank</th>
</tr>
<tr>
<td>flexible</td>
<td>87</td>
</tr>
<tr>
<td>transparent</td>
<td>76</td>
</tr>
<tr>
<td>fun</td>
<td>94</td>
</tr>
</table>
</body>

erb and eruby

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem
inside out; we can actually embed Ruby in an HTML document.

A number of packages allow you to embed Ruby statements in an HTML document-gener-
ically, this markup is known as “eRuby.” There are several different implementations of
eRuby , including erubis and erb. erubis is available as a gem, while erb is written in pure
Ruby and is included with the standard distribution. We’ll look at erb here.

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equivalent
of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using erb

erb is a filter. Input text is passed through untouched, with the following exceptions:

Expression Description
<% ruby code %> This executes the Ruby code between the delimiters.

<%= ruby expression %> This evaluates the Ruby expression and replaces the sequence with
the expression’s value.

<%# ruby code %> The Ruby code between the delimiters is ignored (useful for testing).

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Templating Systems © 283

Expression Description
% line of ruby code A line that starts with a percent is assumed to contain just Ruby

code.
You can run erb from the command line:

erb <options> <document>

If the document is omit